图书介绍
流体力学 第5版PDF|Epub|txt|kindle电子书版本网盘下载
![流体力学 第5版](https://www.shukui.net/cover/76/35033356.jpg)
- (印)坤杜编 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510052644
- 出版时间:2013
- 标注页数:893页
- 文件大小:287MB
- 文件页数:919页
- 主题词:流体力学-高等学校-教材-英文
PDF下载
下载说明
流体力学 第5版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Introduction1
1.1.Fluid Mechanics2
1.2.Units of Measurement3
1.3.Solids,Liquids,and Gases3
1.4.Continuum Hypothesis5
1.5.Molecular Transport Phenomena5
1.6.Surface Tension8
1.7.Fluid Statics9
1.8.Classical Thermodynamics12
First Law of Thermodynamics13
Equations of State14
Specific Heats14
Second Law of Thermodynamics15
Property Relations16
Speed of Sound16
Thermal Expansion Coefficient16
1.9.Perfect Gas16
1.10.Stability of Stratified Fluid Media18
Potential Temperature and Density19
Scale Height of the Atmosphere21
1.11.Dimensional Analysis21
Step 1.Select Variables and Parameters22
Step 2.Create the Dimensional Matrix23
Step 3.Determine the Rank of the Dimensional Matrix23
Step 4.Determine the Number of Dimensionless Groups24
Step 5.Construct the Dimensionless Groups24
Step 6.State the Dimensionless Relationship26
Step 7.Use Physical Reasoning or Additional Knowledge to Simplify the Dimensionless Relationship26
Exercises30
Literature Cited36
Supplemental Reading37
2.Cartesian Tensors39
2.1.Scalars,Vectors,Tensors,Notation39
2.2.Rotation of Axes:Formal Definition of a Vector42
2.3.Multiplication of Matrices44
2.4.Second-Order Tensors45
2.5.Contraction and Multiplication47
2.6.Force on a Surface48
2.7.Kronecker Delta and Alternating Tensor50
2.8.Vector,Dot,and Cross Products51
2.9.Gradient,Divergence,and Curl52
2.10.Symmetric and Antisymmetric Tensors55
2.11.Eigenvalues and Eigenvectors of a Symmetric Tensor56
2.12.Gauss’ Theorem58
2.13.Stokes’ Theorem60
2.14.Comma Notation62
Exercises62
Literature Cited64
Supplemental Reading64
3.Kinematics65
3.1.Introduction and Coordinate Systems65
3.2.Particle and Field Descriptions of Fluid Motion67
3.3.Flow Lines,Fluid Acceleration,and Galilean Transformation71
3.4.Strain and Rotation Rates76
Summary81
3.5.Kinematics of Simple Plane Flows82
3.6.Reynolds Transport Theorem85
Exercises89
Literature Cited93
Supplemental Reading93
4.Conservation Laws95
4.1.Introduction96
4.2.Conservation of Mass96
4.3.Stream Functions99
4.4.Conservation of Momentum101
4.5.Constitutive Equation for a Newtonian Fluid111
4.6.Navier-Stokes Momentum Equation114
4.7.Noninertial Frame of Reference116
4.8.Conservation of Energy121
4.9.Special Forms of the Equations125
Angular Momentum Principle for a Stationary Control Volume125
Bernoulli Equations128
Neglect of Gravity in Constant Density Flows134
The Boussinesq Approximation135
Summary137
4.10.Boundary Conditions137
Moving and Deforming Boundaries139
Surface Tension Revisited139
4.11.Dimensionless Forms of the Equations and Dynamic Similarity143
Exercises151
Literature Cited168
Supplemental Reading168
5.Vorticity Dynamics171
5.1.Introduction171
5.2.Kelvin’s Circulation Theorem176
5.3.Helmholtz’s Vortex Theorems179
5.4.Vorticity Equation in a Nonrotating Frame180
5.5.Velocity Induced by a Vortex Filament:Law of Biot and Savart181
5.6.Vorticity Equation in a Rotating Frame183
5.7.Interaction of Vortices187
5.8.Vortex Sheet191
Exercises192
Literature Cited195
Supplemental Reading196
6.Ideal Flow197
6.1.Relevance of Irrotational Constant-DensityFlow Theory198
6.2.Two-Dimensional Stream Function and Velocity Potential200
6.3.Construction of Elementary Flows in Two Dimensions203
6.4.Complex Potential216
6.5.Forces on a Two-Dimensional Body219
Blasius Theorem219
Kutta-Zhukhovsky Lift Theorem221
6.6.Conformal Mapping222
6.7.Numerical Solution Techniques in Two Dimensions225
6.8.Axisymmetric Ideal Flow231
6.9.Three-Dimensional Potential Flow and Apparent Mass236
6.10.Concluding Remarks240
Exercises241
Literature Cited251
Supplemental Reading251
7.Gravity Waves253
7.1.Introduction254
7.2.Linear Liquid-Surface Gravity Waves256
Approximations for Deep and Shallow Water265
7.3.Influence of Surface Tension269
7.4.Standing Waves271
7.5.Group Velocity,Energy Flux,and Dispersion273
7.6.Nonlinear Waves in Shallow and Deep Water279
7.7.Waves on a Density Interface286
7.8.Internal Waves in a Continuously Stratified Fluid293
Internal Waves in a Stratified Fluid296
Dispersion of Internal Waves in a Stratified Fluid299
Energy Considerations for Internal Waves in a Stratified Fluid302
Exercises304
Literature Cited307
8.Laminar Flow309
8.1.Introduction309
8.2.Exact Solutions for Steady Incompressible Viscous Flow312
Steady Flow between Parallel Plates312
Steady Flow in a Round Tube315
Steady Flow between Concentric Rotating Cylinders316
8.3.Elementary Lubrication Theory318
8.4.Similarity Solutions for Unsteady Incompressible Viscous Flow326
8.5.Flow Due to an Oscillating Plate337
8.6.Low Reynolds Number Viscous Flow Past a Sphere338
8.7.Final Remarks347
Exercises347
Literature Cited359
Supplemental Reading359
9.Boundary Layers and Related Topics361
9.1.Introduction362
9.2.Boundary-Layer Thickness Definitions367
9.3.Boundary Layer on a Flat Plate:Blasius Solution369
9.4.Falkner Skan Similarity Solutions of the Laminar Boundary-Layer Equations373
9.5.Von Karman Momentum Integral Equation375
9.6.Thwaites’ Method377
9.7.Transition,Pressure Gradients,and Boundary-Layer Separation382
9.8.Flow Past a Circular Cylinder388
Low Reynolds Numbers389
Moderate Reynolds Numbers389
High Reynolds Numbers392
9.9.Flow Past a Sphere and the Dynamics of Sports Balls395
Cricket Ball Dynamics396
Tennis Ball Dynamics398
Baseball Dynamics399
9.10.Two-Dimensional Jets399
9.11.Secondary Flows407
Exercises408
Literature Cited418
Supplemental Reading419
10.Computational Fluid Dynamics&HOWARD H.HU421
10.1.Introduction421
10.2.Finite-Difference Method423
Approximation to Derivatives423
Discretization and Its Accuracy425
Convergence,Consistency,and Stability426
10.3.Finite-Element Method429
Weak or Variational Form of Partial Differential Equations429
Galerkin’s Approximation and Finite-Element Interpolations430
Matrix Equations,Comparison with Finite-Difference Method431
Element Point of View of the Finite- Element Method434
10.4.Incompressible Viscous Fluid Flow436
Convection-Dominated Problems437
Incompressibility Condition439
Explicit MacCormack Scheme440
MAC Scheme442
O-Scheme446
Mixed Finite-Element Formulation447
10.5.Three Examples449
Explicit MacCormack Scheme for Driven-Cavity Flow Problem449
Explicit MacCormack Scheme for Flow Over a Square Block453
Finite-Element Formulation for Flow Over a Cylinder Confined in a Channel459
10.6.Concluding Remarks470
Exercises470
Literature Cited471
Supplemental Reading472
11.Instability473
11.1.Introduction474
11.2.Method of Normal Modes475
11.3.Kelvin-Helmholtz Instability477
11.4.Thermal Instability:The Benard Problem484
11.5.Double-Diffusive Instability492
11.6.Centrifugal Instability:Taylor Problem496
11.7.Instability of Continuously Stratified Parallel Flows502
11.8.Squire’s Theorem and the Orr-Sommerfeld Equation508
11.9.Inviscid Stability of Parallel Flows511
11.10.Results for Parallel and Nearly Parallel Viscous Flows515
Two-Stream Shear Layer515
Plane Poiseuille Flow516
Plane Couette Flow517
Pipe Flow517
Boundary Layers with Pressure Gradients517
11.11.Experimental Verification of Boundary-Layer Instability520
11.12.Comments on Nonlinear Effects522
11.13.Transition523
11.14.Deterministic Chaos524
Closure531
Exercises532
Literature Cited539
12.Turbulence541
12.1.Introduction542
12.2.Historical Notes544
12.3.Nomenclature and Statistics for Turbulent Flow545
12.4.Correlations and Spectra549
12.5.Averaged Equations of Motion554
12.6.Homogeneous Isotropic Turbulence560
12.7.Turbulent Energy Cascade and Spectrum564
12.8.Free Turbulent Shear Flows571
12.9.Wall-Bounded Turbulent Shear Flows581
Inner Layer:Law of the Wall584
Outer Layer:Velocity Defect Law585
Overlap Layer:Logarithmic Law585
Rough Surfaces590
12.10.Turbulence Modeling591
A Mixing Length Model593
One-Equation Models595
Two-Equation Models595
12.11.Turbulence in a Stratified Medium596
The Richardson Numbers597
Monin-Obukhov Length598
Spectrum of Temperature Fluctuations600
12.12.Taylor’s Theory of Turbulent Dispersion601
Rate of Dispersion of a Single Particle602
Random Walk605
Behavior of a Smoke Plume in the Wind606
Turbulent Diffusivity607
12.13.Concluding Remarks607
Exercises608
Literature Cited618
Supplemental Reading620
13.Geophysical Fluid Dynamics621
13.1.Introduction622
13.2.Vertical Variation of Density in the Atmosphere and Ocean623
13.3.Equations of Motion625
13.4.Approximate Equations for a Thin Layer on a Rotating Sphere628
f-Plane Model630
β-Plane Model630
13.5.Geostrophic Flow630
Thermal Wind632
Taylor-Proudman Theorem632
13.6.Ekman Layer at a Free Surface633
Explanation in Terms of Vortex Tilting637
13.7.Ekman Layer on a Rigid Surface639
13.8.Shallow-Water Equations642
13.9.Normal Modes in a Continuously Stratified Layer644
Boundary Conditions on ?n646
Vertical Mode Solution for Uniform N646
Summary649
13.10.High-and Low-Frequency Regimes in Shallow-Water Equations649
13.11.Gravity Waves with Rotation651
Particle Orbit652
Inertial Motion653
13.12.Kelvin Wave654
13.13.Potential Vorticity Conservation in Shallow-Water Theory658
13.14.Internal Waves662
WKB Solution664
Particle Orbit666
Discussion of the Dispersion Relation668
Lee Wave670
13.15.Rossby Wave671
Quasi-Geostrophic Vorticity Equation671
Dispersion Relation673
13.16.Barotropic Instability676
13.17.Baroclinic Instability678
Perturbation Vorticity Equation679
Wave Solution681
Instability Criterion682
Energetics684
13.18.Geostrophic Turbulence685
Exercises688
Literature Cited690
Supplemental Reading690
14.Aerodynamics691
14.1.Introduction692
14.2.Aircraft Terminology692
Control Surfaces693
14.3.Characteristics of Airfoil Sections696
Historical Notes701
14.4.Conformal Transformation for Generating Airfoil Shapes702
14.5.Lift of a Zhukhovsky Airfoil706
14.6.Elementary Lifting Line Theory for Wings of Finite Span708
Lanchester Versus Prandtl716
14.7.Lift and Drag Characteristics of Airfoils717
14.8.Propulsive Mechanisms of Fish and Birds719
14.9.Sailing against the Wind721
Exercises722
Literature Cited728
Supplemental Reading728
15.Compressible Flow729
15.1.Introduction730
Perfect Gas Thermodynamic Relations731
15.2.Acoustics732
15.3.Basic Equations for One-Dimensional Flow736
15.4.Reference Properties in Compressible Flow738
15.5.Area-Velocity Relationship in One-Dimensional Isentropic Flow740
15.6.Normal Shock Waves748
Stationary Normal Shock Wave in a Moving Medium748
Moving Normal Shock Wave in a Stationary Medium752
Normal Shock Structure753
15.7.Operation of Nozzles at Different Back Pressures755
Convergent Nozzle755
Convergent-Divergent Nozzle757
15.8.Effects of Friction and Heating in Constant-Area Ducts761
Effect of Friction763
Effect of Heat Transfer764
15.9.Pressure Waves in Planar Compressible Flow765
15.10.Thin Airfoil Theory in Supersonic Flow773
Exercises775
Literature Cited778
Supplemental Reading778
16.Introduction to Biofluid Mechanics&PORTONOVO S.AYYASWAMY779
16.1.Introduction779
16.2.The Circulatory System in the Human Body780
The Heart as a Pump785
Nature of Blood788
Nature of Blood Vessels793
16.3.Modeling of Flow in Blood Vessels796
Steady Blood Flow Theory797
Pulsatile Blood Flow Theory805
Blood Vessel Bifurcation:An Application of Poiseuille’s Formula and Murray’s Law820
Flow in a Rigid-Walled Curved Tube825
Flow in Collapsible Tubes831
Laminar Flow of a Casson Fluid in a Rigid-Walled Tube839
Pulmonary Circulation841
The Pressure Pulse Curve in the Right Ventricle842
Effect of Pulmonary Arterial Pressure on Pulmonary Resistance843
16.4.Introduction to the Fluid Mechanics of Plants844
Exercises849
Acknowledgment850
Literature Cited851
Supplemental Reading852
Appendix A853
Appendix B857
Appendix C869
Appendix D873
Index875