图书介绍
偏微分方程与孤波理论 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- Abdul-MajidWazwaz著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040254808
- 出版时间:2009
- 标注页数:742页
- 文件大小:19MB
- 文件页数:761页
- 主题词:偏微分方程-英文;孤立波-理论-英文
PDF下载
下载说明
偏微分方程与孤波理论 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Partial Differential Equations1
1 Basic Concepts3
1.1 Introduction3
1.2 Definitions4
1.2.1 Definition of a PDE4
1.2.2 Order of a PDE5
1.2.3 Linear and Nonlinear PDEs6
1.2.4 Some Linear Partial Differential Equations7
1.2.5 Some Nonlinear Partial Differential Equations7
1.2.6 Homogeneous and Inhomogeneous PDEs9
1.2.7 Solution of a PDE9
1.2.8 Boundary Conditions11
1.2.9 Initial Conditions12
1.2.10 Well-posed PDEs12
1.3 Classifications of a Second-order PDE14
References17
2 First-order Partial Differential Equations19
2.1 Introduction19
2.2 Adomian Decomposition Method19
2.3 The Noise Terms Phenomenon36
2.4 The Modified Decomposition Method41
2.5 The Variational Iteration Method47
2.6 Method of Characteristics54
2.7 Systems of Linear PDEs by Adomian Method59
2.8 Systems of Linear PDEs by Variational Iteration Method63
References68
3 One Dimensional Heat Flow69
3.1 Introduction69
3.2 The Adomian Decomposition Method70
3.2.1 Homogeneous Heat Equations73
3.2.2 Inhomogeneous Heat Equations80
3.3 The Variational Iteration Method83
3.3.1 Homogeneous Heat Equations84
3.3.2 Inhomogeneous Heat Equations87
3.4 Method of Separation of Variables89
3.4.1 Analysis of the Method89
3.4.2 Inhomogeneous Boundary Conditions99
3.4.3 Equations with Lateral Heat Loss102
References106
4 Higher Dimensional Heat Flow107
4.1 Introduction107
4.2 Adomian Decomposition Method108
4.2.1 Two Dimensional Heat Flow108
4.2.2 Three Dimensional Heat Flow116
4.3 Method of Separation of Variables124
4.3.1 Two Dimensional Heat Flow124
4.3.2 Three Dimensional Heat Flow134
References140
5 One Dimensional Wave Equation143
5.1 Introduction143
5.2 Adornian Decomposition Method144
5.2.1 Homogeneous Wave Equations146
5.2.2 Inhomogeneous Wave Equations152
5.2.3 Wave Equation in an Infinite Domain157
5.3 The Variational Iteration Method162
5.3.1 Homogeneous Wave Equations162
5.3.2 Inhomogeneous Wave Equations168
5.3.3 Wave Equation in an Infinite Domain170
5.4 Method of Separation of Variables174
5.4.1 Analysis of the Method174
5.4.2 Inhomogeneous Boundary Conditions184
5.5 Wave Equation in an Infinite Domain:D'Alembert Solution190
References194
6 Higher Dimensional Wave Equation195
6.1 Introduction195
6.2 Adomian Decomposition Method195
6.2.1 Two Dimensional Wave Equation196
6.2.2 Three Dimensional Wave Equation210
6.3 Method of Separation of Variables220
6.3.1 Two Dimensional Wave Equation221
6.3.2 Three Dimensional Wave Equation231
References236
7 Laplace's Equation237
7.1 Introduction237
7.2 Adomian Decomposition Method238
7.2.1 Two Dimensional Laplace's Equation238
7.3 The Variational Iteration Method247
7.4 Method of Separation of Variables251
7.4.1 Laplace's Equation in Two Dimensions251
7.4.2 Laplace's Equation in Three Dimensions259
7.5 Laplace's Equation in Polar Coordinates267
7.5.1 Laplace's Equation for a Disc268
7.5.2 Laplace's Equation for an Annulus275
References283
8 Nonlinear Partial Differential Equations285
8.1 Introduction285
8.2 Adomian Decomposition Method287
8.2.1 Calculation of Adomian Polynomials288
8.2.2 Alternative Algorithm for Calculating Adomian Polynomials292
8.3 Nonlinear ODEs by Adomian Method301
8.4 Nonlinear ODEs by VIM312
8.5 Nonlinear PDEs by Adomian Method319
8.6 Nonlinear PDEs by VIM334
8.7 Nonlinear PDEs Systems by Adomian Method341
8.8 Systems of Nonlinear PDEs by VIM347
References351
9 Linear and Nonlinear Physical Models353
9.1 Introduction353
9.2 The Nonlinear Advection Problem354
9.3 The Goursat Problem360
9.4 The Klein-Gordon Equation370
9.4.1 Linear Klein-Gordon Equation371
9.4.2 Nonlinear Klein-Gordon Equation375
9.4.3 The Sine-Gordon Equation378
9.5 The Burgers Equation381
9.6 The Telegraph Equation388
9.7 Schrodinger Equation394
9.7.1 The Linear Schrodinger Equation394
9.7.2 The Nonlinear Schrodinger Equation397
9.8 Korteweg-de Vries Equation401
9.9 Fourth-order Parabolic Equation405
9.9.1 Equations with Constant Coefficients405
9.9.2 Equations with Variable Coefficients408
References413
10 Numerical Applications and Padé Approximants415
10.1 Introduction415
10.2 Ordinary Differential Equations416
10.2.1 Perturbation Problems416
10.2.2 Nonperturbed Problems421
10.3 Partial Differential Equations427
10.4 The Padé Approximants430
10.5 Padé Approximants and Boundary Value Problems439
References455
11 Solitons and Compactons457
11.1 Introduction457
11.2 Solitons459
11.2.1 The KdV Equation460
11.2.2 The Modified KdV Equation462
11.2.3 The Generalized KdV Equation464
11.2.4 The Sine-Gordon Equation464
11.2.5 The Boussinesq Equation465
11.2.6 The Kadomtsev-Petviashvili Equation467
11.3 Compactons469
11.4 The Defocusing Branch of K(n,n)474
References475
Part Ⅱ Solitray Waves Theory479
12 Solitary Waves Theory479
12.1 Introduction479
12.2 Definitions480
12.2.1 Dispersion and Dissipation482
12.2.2 Types of Travelling Wave Solutions484
12.2.3 Nonanalytic Solitary Wave Solutions490
12.3 Analysis of the Methods491
12.3.1 The Tanh-coth Method491
12.3.2 The Sine-cosine Method493
12.3.3 Hirota's Bilinear Method494
12.4 Conservation Laws496
References502
13 The Family of the KdV Equations503
13.1 Introduction503
13.2 The Family of the KdV Equations505
13.2.1 Third-order KdV Equations505
13.2.2 The K(n,n) Equation507
13.3 The KdV Equation507
13.3.1 Using the Tanh-coth Method508
13.3.2 Using the Sine-cosine Method510
13.3.3 Multiple-soliton Solutions of the KdV Equation510
13.4 The Modified KdV Equation518
13.4.1 Using the Tanh-coth Method519
13.4.2 Using the Sine-cosine Method520
13.4.3 Multiple-soliton Solutions of the mKdV Equation521
13.5 Singular Soliton Solutions523
13.6 The Generalized KdV Equation526
13.6.1 Using the Tanh-coth Method526
13.6.2 Using the Sine-cosine Method528
13.7 The Potential KdV Equation528
13.7.1 Using the Tanh-coth Method529
13.7.2 Multiple-soliton Solutions of the Potential KdV Equation……531 13.8 The Gardner Equation533
13.8.1 The Kink Solution533
13.8.2 The Soliton Solution534
13.8.3 N-soliton Solutions of the Positive Gardner Equation535
13.8.4 Singular Soliton Solutions537
13.9 Generalized KdV Equation with Two Power Nonlinearities542
13.9.1 Using the Tanh Method543
13.9.2 Using the Sine-cosine Method544
13.10 Compactons:Solitons with Compact Support544
13.10.1 The K(n,n)Equation546
13.11 Variants of the K(n,n) Equation547
13.11.1 First Variant548
13.11.2 Second Variant549
13.11.3 Third Variant551
13.12 Compacton-like Solutions553
13.12.1 The Modified KdV Equation553
13.12.2 The Gardner Equation554
13.12.3 The Modified Equal Width Equation554
References555
14 KdV and mKdV Equations of Higher-orders557
14.1 Introduction557
14.2 Family of Higher-order KdV Equations558
14.2.1 Fifth-order KdV Equations558
14.2.2 Seventh-order KdV Equations561
14.2.3 Ninth-order KdV Equations562
14.3 Fifth-order KdV Equations562
14.3.1 Using the Tanh-coth Method563
14.3.2 The First Condition564
14.3.3 The Second Condition566
14.3.4 N-soliton Solutions of the Fifth-order KdV Equations567
14.4 Seventh-order KdV Equations576
14.4.1 Using the Tanh-coth Method576
14.4.2 N-soliton Solutions of the Seventh-order KdV Equations578
14.5 Ninth-order KdV Equations582
14.5.1 Using the Tanh-coth Method583
14.5.2 The Soliton Solutions584
14.6 Family of Higher-order mKdV Equations585
14.6.1 N-soliton Solutions for Fifth-order mKdV Equation586
14.6.2 Singular Soliton Solutions for Fifth-order mKdV Equation587
14.6.3 N-soliton Solutions for the Seventh-order mKdV Equation589
14.7 Complex Solution for the Seventh-order mKdV Equations591
14.8 The Hirota-Satsuma Equations592
14.8.1 Using the Tanh-coth Method593
14.8.2 N-soliton Solutions of the Hirota-Satsuma System594
14.8.3 N-soliton Solutions by an Alternative Method596
14.9 Generalized Short Wave Equation597
References602
15 Family of KdV-type Equations605
15.1 Introduction605
15.2 The Complex Modified KdV Equation606
15.2.1 Using the Sine-cosine Method607
15.2.2 Using the Tanh-coth Method608
15.3 The Benjamin-Bona-Mahony Equation612
15.3.1 Using the Sine-cosine Method612
15.3.2 Using the Tanh-coth Method613
15.4 The Medium Equal Width(MEW)Equation615
15.4.1 Using the Sine-cosine Method615
15.4.2 Using the Tanh-coth Method616
15.5 The Kawahara and the Modified Kawahara Equations617
15.5.1 The Kawahara Equation618
15.5.2 The Modified Kawahara Equation619
15.6 The Kadomtsev-Petviashvili(KP)Equation620
15.6.1 Using the Tanh-coth Method621
15.6.2 Multiple-soliton Solutions of the KP Equation622
15.7 The Zakharov-Kuznetsov(ZK)Equation626
15.8 The Benjamin-Ono Equation629
15.9 The KdV-Burgers Equation630
15.10 Seventh-order KdV Equation632
15.10.1 The Sech Method632
15.11 Ninth-order KdV Equation634
15.11.1 The Sech Method634
References637
16 Boussinesq,Klein-Gordon and Liouville Equations639
16.1 Introduction639
16.2 The Boussinesq Equation641
16.2.1 Using the Tanh-coth Method641
16.2.2 Multiple-soliton Solutions of the Boussinesq Equation643
16.3 The Improved Boussinesq Equation646
16.4 The Klein-Gordon Equation648
16.5 The Liouville Equation649
16.6 The Sine-Gordon Equation651
16.6.1 Using the Tanh-coth Method651
16.6.2 Using the B?cklund Transformation654
16.6.3 Multiple-soliton Solutions for Sine-Gordon Equation655
16.7 The Sinh-Gordon Equation657
16.8 The Dodd-Bullough-Mikhailov Equation658
16.9 The Tzitzeica-Dodd-Bullough Equation659
16.10 The Zhiber-Shabat Equation661
References662
17 Burgers,Fisher and Related Equations665
17.1 Introduction665
17.2 The Burgers Equation666
17.2.1 Using the Tanh-coth Method667
17.2.2 Using the Cole-Hopf Transformation668
17.3 The Fisher Equation670
17.4 The Huxley Equation671
17.5 The Burgers-Fisher Equation673
17.6 The Burgers-Huxley Equation673
17.7 The FitzHugh-Nagumo Equation675
17.8 Parabolic Equation with Exponential Nonlinearity676
17.9 The Coupled Burgers Equation678
17.10 The Kuramoto-Sivashinsky(KS)Equation680
References681
18 Families of Camassa-Holm and Schrodinger Equations683
18.1 Introduction683
18.2 The Family of Camassa-Holm Equations686
18.2.1 Using the Tanh-coth Method686
18.2.2 Using an Exponential Algorithm688
18.3 Schrodinger Equation of Cubic Nonlinearity689
18.4 Schrodinger Equation with Power Law Nonlinearity690
18.5 The Ginzburg-Landau Equation692
18.5.1 The Cubic Ginzburg-Landau Equation693
18.5.2 The Generalized Cubic Ginzburg-Landau Equation694
18.5.3 The Generalized Quintic Ginzburg-Landau Equation695
References696
Appendix699
A Indefinite Integrals699
A.1 Fundamental Forms699
A.2 Trigonometric Forms700
A.3 Inverse Trigonometric Forms700
A.4 Exponential and Logarithmic Forms701
A.5 Hyperbolic Forms701
A.6 Other Forms702
B Series703
B.1 Exponential Functions703
B.2 Trigonometric Functions703
B.3 Inverse Trigonometric Functions704
B.4 Hyperbolic Functions704
B.5 Inverse Hyperbolic Functions704
C Exact Solutions of Burgers' Equation705
D Padé Approximants for Well-Known Functions707
D.1 Exponential Functions707
D.2 Trigonometric Functions707
D.3 Hyperbolic Functions709
D.4 Logarithmic Functions709
E The Error and Gamma Functions711
E.1 The Error function711
E.2 The Gamma function Г(x)711
F Infinite Series712
F.1 Numerical Series712
F.2 Trigonometric Series713
Answers715
Index739