图书介绍

分析 第3卷 英文PDF|Epub|txt|kindle电子书版本网盘下载

分析 第3卷 英文
  • (德)阿莫恩(HERBERTAMANN),JOACHIMESCHER著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510047985
  • 出版时间:2012
  • 标注页数:468页
  • 文件大小:71MB
  • 文件页数:481页
  • 主题词:分析(数学)-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

分析 第3卷 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter Ⅸ Elements of measure theory3

1 Measurable spaces3

σ-algebras3

The Borel σ-algebra5

The second countability axiom6

Generating the Borel σ-algebra with intervals8

Bases of topological spaces9

The product topology10

Product Borelσ-algebras12

Measurability of sections13

2 Measures17

Set functions17

Measure spaces18

Properties of measures18

Null sets20

3 Outer measures24

The construction of outer measures24

The Lebesgue outer measure25

The Lebesgue-Stieltjes outer measure28

Hausdorff outer measures29

4 Measurable sets32

Motivation32

Theσ-algebra of μ-measurable sets33

Lebesgue measure and Hausdorff measure35

Metric measures36

5 The Lebesgue measure40

The Lebesgue measure space40

The Lebesgue measure is regular41

A characterization of Lebesgue measurability44

Images of Lebesgue measurable sets44

The Lebesgue measure is translation invariant47

A characterization of Lebesgue measure48

The Lebesgue measure is invariant under rigid motions50

The substitution rule for linear maps51

Sets without Lebesgue measure53

Chapter Ⅹ Integration theory62

1 Measurable functions62

Simple functions and measurable functions62

A measurability criterion64

Measurable ?-valued functions67

The lattice of measurable ?-valued functions68

Pointwise limits of measurable functions73

Radon measures74

2 Integrable functions80

The integral of a simple function80

The L1-seminorm82

The Bochner-Lebesgue integral84

The completeness of L187

Elementary properties of integrals88

Convergence in L191

3 Convergence theorems97

Integration of nonnegative ?-valued functions97

The monotone convergence theorem100

Fatou's lemma101

Integration of ?-valued functions103

Lebesgue's dominated convergence theorem104

Parametrized integrals107

4 Lebesgue spaces110

Essentially bounded functions110

The H?lder and Minkowski inequalities111

Lebesgue spaces are complete114

Lp-spaces116

Continuous functions with compact support118

Embeddings119

Continuous linear functionals on Lp121

5 The n-dimensional Bochner-Lebesgue integral128

Lebesgue measure spaces128

The Lebesgue integral of absolutely integrable functions129

A characterization of Riemann integrable functions132

6 Fubini's theorem137

Maps defined almost everywhere137

Cavalieri's principle138

Applications of Cavalieri's principle141

Tonelli's theorem144

Fubini's theorem for scalar functions145

Fubini's theorem for vector-valued functions148

Minkowski's inequality for integrals152

A characterization of Lp(Rm+n,E)157

A trace theorem158

7 The convolution162

Defining the convolution162

The translation group165

Elementary properties of the convolution168

Approximations to the identity170

Test functions172

Smooth partitions of unity173

Convolutions of E-valued functions177

Distributions177

Linear differential operators181

Weak derivatives184

8 The substitution rule191

Pulling back the Lebesgue measure191

The substitution rule:general case195

Plane polar coordinates197

Polar coordinates in higher dimensions198

Integration of rotationally symmetric functions202

The substitution rule for vector-valued functions203

9 The Fourier transform206

Definition and elementary properties206

The space of rapidly decreasing functions208

The convolution algebra S211

Calculations with the Fourier transform212

The Fourier integral theorem215

Convolutions and the Fourier transform218

Fourier multiplication operators220

Plancherel's theorem223

Symmetric operators225

The Heisenberg uncertainty relation227

Chapter Ⅺ Manifolds and differential forms235

1 Submanifolds235

Definitions and elementary properties235

Submersions241

Submanifolds with boundary246

Local charts250

Tangents and normals251

The regular value theorem252

One-dimensional manifolds256

Partitions of unity256

2 Multilinear algebra260

Exterior products260

Pull backs267

The volume element268

The Riesz isomorphism271

The Hodge star operator273

Indefinite inner products277

Tensors281

3 The local theory of differential forms285

Definitions and basis representations285

Pull backs289

The exterior derivative292

The Poincaré lemma295

Tensors299

4 Vector fields and differential forms304

Vector fields304

Local basis representation306

Differential forms308

Local representations311

Coordinate transformations316

The exterior derivative319

Closed and exact forms321

Contractions322

Orientability324

Tensor fields330

5 Riemannian metrics333

The volume element333

Riemannian manifolds337

The Hodge star348

The codifferential350

6 Vector analysis358

The Riesz isomorphism358

The gradient361

The divergence363

The Laplace-Beltrami operator367

The curl372

The Lie derivative375

The Hodge-Laplace operator379

The vector product and the curl382

Chapter Ⅻ Integration on manifolds391

1 Volume measure391

The Lebesgue σ-algebra of M391

The definition of the volume measure392

Properties397

Integrability398

Calculation of several volumes401

2 Integration of differential forms407

Integrals of m-forms407

Restrictions to submanifolds409

The transformation theorem414

Fubini's theorem415

Calculations of several integrals418

Flows of vector fields421

The transport theorem425

3 Stokes's theorem430

Stokes's theorem for smooth manifolds430

Manifolds with singularities432

Stokes's theorem with singularities436

Planar domains439

Higher-dimensional problems441

Homotopy invariance and applications443

Gauss's law446

Green's formula448

The classical Stokes's theorem450

The star operator and the coderivative451

References457

热门推荐