图书介绍
Probability and Computing Randomized Algorithms and Probabilistic AnalysisPDF|Epub|txt|kindle电子书版本网盘下载
![Probability and Computing Randomized Algorithms and Probabilistic Analysis](https://www.shukui.net/cover/57/34135316.jpg)
- 著
- 出版社: CAMBRIDGE UNIVERSITY PRESS
- ISBN:0521835402
- 出版时间:2005
- 标注页数:352页
- 文件大小:145MB
- 文件页数:367页
- 主题词:
PDF下载
下载说明
Probability and Computing Randomized Algorithms and Probabilistic AnalysisPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Events and Probability1
1.1 Application: Verifying Polynomial Identities1
1.2 Axioms of Probability3
1.3 Application: Verifying Matrix Multiplication8
1.4 Application: A Randomized Min-Cut Algorithm12
1.5 Exercises14
2 Discrete Random Variables and Expectation20
2.1 Random Variables and Expectation20
2.1.1 Linearity of Expectations22
2.1.2 Jensen's Inequality23
2.2 The Bernoulli and Binomial Random Variables25
2.3 Conditional Expectation26
2.4 The Geometric Distribution30
2.4.1 Example: Coupon Collector's Problem32
2.5 Application: The Expected Run-Time of Quicksort34
2.6 Exercises38
3 Moments and Deviations44
3.1 Markov's Inequality44
3.2 Variance and Moments of a Random Variable45
3.2.1 Example: Variance of a Binomial Random Variable48
3.3 Chebyshev's Inequality48
3.3.1 Example: Coupon Collector's Problem50
3.4 Application: A Randomized Algorithm for Computing the Median52
3.4.1 The Algorithm53
3.4.2 Analysis of the Algorithm54
3.5 Exercises57
4 Chernoff Bounds61
4.1 Moment Generating Functions61
4.2 Deriving and Applying Chernoff Bounds63
4.2.1 Chernoff Bounds for the Sum of Poisson Trials63
4.2.2 Example: Coin Flips67
4.2.3 Application: Estimating a Parameter67
4.3 Better Bounds for Some Special Cases69
4.4 Application: Set Balancing71
4.5 Application: Packet Routing in Sparse Networks72
4.5.1 Permutation Routing on the Hypercube73
4.5.2 Permutation Routing on the Butterfly78
4.6 Exercises83
5 Balls, Bins, and Random Graphs90
5.1 Example: The Birthday Paradox90
5.2 Balls into Bins92
5.2.1 The Balls-and-Bins Model92
5.2.2 Application: Bucket Sort93
5.3 The Poisson Distribution94
5.3.1 Limit of the Binomial Distribution98
5.4 The Poisson Approximation99
5.4.1 Example: Coupon Collector's Problem, Revisited104
5.5 Application: Hashing106
5.5.1 Chain Hashing106
5.5.2 Hashing: Bit Strings108
5.5.3 Bloom Filters109
5.5.4 Breaking Symmetry112
5.6 Random Graphs112
5.6.1 Random Graph Models112
5.6.2 Application: Hamiltonian Cycles in Random Graphs113
5.7 Exercises118
5.8 An Exploratory Assignment124
6 The Probabilistic Method126
6.1 The Basic Counting Argument126
6.2 The Expectation Argument128
6.2.1 Application: Finding a Large Cut129
6.2.2 Application: Maximum Satisfiability130
6.3 Derandomization Using Conditional Expectations131
6.4 Sample and Modify133
6.4.1 Application: Independent Sets133
6.4.2 Application: Graphs with Large Girth134
6.5 The Second Moment Method134
6.5.1 Application: Threshold Behavior in Random Graphs135
6.6 The Conditional Expectation Inequality136
6.7 The Lovasz Local Lemma138
6.7.1 Application: Edge-Disjoint Paths141
6.7.2 Application: Satisfiability142
6.8 Explicit Constructions Using the Local Lemma142
6.8.1 Application: A Satisfiability Algorithm143
6.9 Lovasz Local Lemma: The General Case146
6.10 Exercises148
7 Markov Chains and Random Walks153
7.1 Markov Chains: Definitions and Representations153
7.1.1 Application: A Randomized Algorithm for 2-Satisfiability156
7.1.2 Application: A Randomized Algorithm for 3-Satisfiability159
7.2 Classification of States163
7.2.1 Example: The Gambler's Ruin166
7.3 Stationary Distributions167
7.3.1 Example: A Simple Queue173
7.4 Random Walks on Undirected Graphs174
7.4.1 Application: An s-t Connectiviry Algorithm176
7.5 Parrondo's Paradox177
7.6 Exercises182
8 Continuous Distributions and the Poisson Process188
8.1 Continuous Random Variables188
8.1.1 Probability Distributions in R188
8.1.2 Joint Distributions and Conditional Probability191
8.2 The Uniform Distribution193
8.2.1 Additional Properties of the Uniform Distribution194
8.3 The Exponential Distribution196
8.3.1 Additional Properties of the Exponential Distribution197
8.3.2 Example: Balls and Bins with Feedback199
8.4 The Poisson Process201
8.4.1 Interarrival Distribution204
8.4.2 Combining and Splitting Poisson Processes205
8.4.3 Conditional Arrival Time Distribution207
8.5 Continuous Time Markov Processes210
8.6 Example: Markovian Queues212
8.6.1 M/M/1 Queue in Equilibrium213
8.6.2 M/M/1/K Queue in Equilibrium216
8.6.3 The Number of Customers in an M/M/∞ Queue216
8.7 Exercises219
9 Entropy, Randomness, and Information225
9.1 The Entropy Function225
9.2 Entropy and Binomial Coefficients228
9.3 Entropy: A Measure of Randomness230
9.4 Compression234
9.5 Coding: Shannon's Theorem237
9.6 Exercises245
10 The Monte Carlo Method252
10.1 The Monte Carlo Method252
10.2 Application: The DNF Counting Problem255
10.2.1 The Naive Approach255
10.2.2 A Fully Polynomial Randomized Scheme for DNF Counting257
10.3 From Approximate Sampling to Approximate Counting259
10.4 The Markov Chain Monte Carlo Method263
10.4.1 The Metropolis Algorithm265
10.5 Exercises267
10.6 An Exploratory Assignment on Minimum Spanning Trees270
11 Coupling of Markov Chains271
11.1 Variation Distance and Mixing Time271
11.2 Coupling274
11.2.1 Example: Shuffling Cards275
11.2.2 Example: Random Walks on the Hypercube276
11.2.3 Example: Independent Sets of Fixed Size277
11.3 Application: Variation Distance Is Nonincreasing278
11.4 Geometric Convergence281
11.5 Application: Approximately Sampling Proper Colorings282
11.6 Path Coupling286
11.7 Exercises289
12 Martingales295
12.1 Martingales295
12.2 Stopping Times297
12.2.1 Example: A Ballot Theorem299
12.3 Wald's Equation300
12.4 Tail Inequalities for Martingales303
12.5 Applications of the Azuma-Hoeffding Inequality305
12.5.1 General Formalization305
12.5.2 Application: Pattern Matching307
12.5.3 Application: Balls and Bins308
12.5.4 Application: Chromatic Number308
12.6 Exercises309
13 Pairwise Independence and Universal Hash Functions314
13.1 Pairwise Independence314
13.1.1 Example: A Construction of Pairwise Independent Bits315
13.1.2 Application: Derandomizing an Algorithm for Large Cuts316
13.1.3 Example: Constructing Pairwise Independent Values Moduloa Prime317
13.2 Chebyshev's Inequality for Pairwise Independent Variables318
13.2.1 Application: Sampling Using Fewer Random Bits319
13.3 Families of Universal Hash Functions321
13.3.1 Example: A 2-Universal Family of Hash Functions323
13.3.2 Example: A Strongly 2-Universal Family of Hash Functions324
13.3.3 Application: Perfect Hashing326
13.4 Application: Finding Heavy Hitters in Data Streams328
13.5 Exercises333
14 Balanced Allocations336
14.1 The Power of Two Choices336
14.1.1 The Upper Bound336
14.2 Two Choices: The Lower Bound341
14.3 Applications of the Power of Two Choices344
14.3.1 Hashing344
14.3.2 Dynamic Resource Allocation345
14.4 Exercises345
Further Reading349
Index350