图书介绍
Numerical analysis: mathematics of scientific computing Third Edition = 数值分析 (英文版·第3版)PDF|Epub|txt|kindle电子书版本网盘下载
![Numerical analysis: mathematics of scientific computing Third Edition = 数值分析 (英文版·第3版)](https://www.shukui.net/cover/12/33997088.jpg)
- David Kincaid ; Ward Cheney 著
- 出版社: China Machine Press
- ISBN:7111119134
- 出版时间:2003
- 标注页数:794页
- 文件大小:79MB
- 文件页数:807页
- 主题词:数值计算-高等学校-教材-英文
PDF下载
下载说明
Numerical analysis: mathematics of scientific computing Third Edition = 数值分析 (英文版·第3版)PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Numerical Analysis:What Is It?1
1 Mathematical Preliminaries3
1.0 Introduction3
1.1 Basic Concepts and Taylor’s Theorem3
1.2 Orders of Convergence and Additional Basic Concepts15
1.3 Difference Equations28
2 Computer Arithmetic37
2.0 Introduction37
2.1 Floating-Point Numbers and Roundoff Errors37
2.2 Absolute and Relative Errors:Loss of Significance55
2.3 Stable and Unstable Computations:Conditioning64
3 Solution of Nonlinear Equations73
3.0 Introduction73
3.1 Bisection (Interval Halving) Method74
3.2 Newton’s Method81
3.3 Secant Method93
3.4 Fixed Points and Functional Iteration100
3.5 Computing Roots of Polynomials109
3.6 Homotopy and Continuation Methods130
4 Solving Systems of Linear Equations139
4.0 Introduction139
4.1 Matrix Algebra140
4.2 LU and Cholesky Factorizations149
4.3 Pivoting and Constructing an Algorithm163
4.4 Norms and the Analysis of Errors186
4.5 Neumann Series and Iterative Refinement197
4.6 Solution of Equations by Iterative Methods207
4.7 Steepest Descent and Conjugate Gradient Methods232
4.8 Analysis of Roundoff Error in the Gaussian Algorithm245
5 Selected Topics in Numerical Linear Algebra254
5.0 Review of Basic Concepts254
5.1 Matrix Eigenvalue Problem:Power Method257
5.2 Schur’s and Gershgorin’s Theorems265
5.3 Orthogonal Factorizations and Least-Squares Problems273
5.4 Singular-Value Decomposition and Pseudoinverses287
5.5 QR-Algorithm of Francis for the Eigenvalue Problem298
6 Approximating Functions308
6.0 Introduction308
6.1 Polynomial Interpolation308
6.2 Divided Differences327
6.3 Hermite Interpolation338
6.4 Spline Interpolation349
6.5 B-Splines:Basic Theory366
6.6 B-Splines:Applications377
6.7 Taylor Series388
6.8 Best Approximation:Least-Squares Theory392
6.9 Best Approximation:Chebyshev Theory405
6.10 Interpolation in Higher Dimensions420
6.11 Continued Fractions438
6.12 Trigonometric Interpolation445
6.13 Fast Fourier Transform451
6.14 Adaptive Approximation460
7 Numerical Differentiation and Integration465
7.1 Numerical Differentiation and Richardson Extrapolation465
7.2 Numerical Integration Based on Interpolation478
7.3 Gaussian Quadrature492
7.4 Romberg Integration502
7.5 Adaptive Quadrature507
7.6 Sard’s Theory of Approximating Functionals513
7.7 Bernoulli Polynomials and the Euler-Maclaurin Formula519
8 Numerical Solution of Ordinary Differential Equations524
8.0 Introduction524
8.1 The Existence and Uniqueness of Solutions524
8.2 Taylor-Series Method530
8.3 Runge-Kutta Methods539
8.4 Multistep Methods549
8.5 Local and Global Errors:Stability557
8.6 Systems and Higher-Order Ordinary Differential Equations565
8.7 Boundary-Value Problems572
8.8 Boundary-Value Problems:Shooting Methods581
8.9 Boundary-Value Problems:Finite-Differences589
8.10 Boundary-Value Problems:Collocation593
8.11 Linear Differential Equations597
8.12 Stiff Equations608
9 Numerical Solution of Partial Differential Equations615
9.0 Introduction615
9.1 Parabolic Equations:Explicit Methods615
9.2 Parabolic Equations:Implicit Methods623
9.3 Problems Without Time Dependence:Finite-Differences629
9.4 Problems Without Time Dependence:Galerkin Methods634
9.5 First-Order Partial Differential Equations:Characteristics642
9.6 Quasilinear Second-Order Equations:Characteristics650
9.7 Other Methods for Hyperbolic Problems660
9.8 Multigrid Method667
9.9 Fast Methods for Poisson’s Equation676
10 Linear Programming and Related Topics681
10.1 Convexity and Linear Inequalities681
10.2 Linear Inequalities689
10.3 Linear Programming695
10.4 The Simplex Algorithm700
11 Optimization711
11.0 Introduction711
11.1 One-Variable Case712
11.2 Descent Methods716
11.3 Analysis of Quadratic Objective Functions719
11.4 Quadratic-Fitting Algorithms721
11.5 Nelder-Meade Algorithm722
11.6 Simulated Annealing723
11.7 Genetic Algorithms724
11.8 Convex Programming725
11.9 Constrained Minimization726
11.10 Pareto Optimization727
Appendix A An Overview of Mathematical Software731
Bibliography745
Index771