图书介绍
Basic principles of membrane technologyPDF|Epub|txt|kindle电子书版本网盘下载
- Marcel Mulder 著
- 出版社: Kluwer Academic
- ISBN:079234247X
- 出版时间:1996
- 标注页数:564页
- 文件大小:147MB
- 文件页数:577页
- 主题词:
PDF下载
下载说明
Basic principles of membrane technologyPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ Introduction1
Ⅰ.1 Separation processes1
Ⅰ.2 Introduction to membrane processes7
Ⅰ.3 History9
Ⅰ.4 Definition of a membrane12
Ⅰ.5 Membrane processes14
Ⅰ.6 Solved problems18
Ⅰ.7 Unsolved problems19
Ⅰ.8 Literature20
Ⅱ Materials and material properties22
Ⅱ.1 Introduction22
Ⅱ.2 Polymers22
Ⅱ.3 Stereoisomerism24
Ⅱ.4 Chain flexibility26
Ⅱ.5 Molecular weight27
Ⅱ.6 Chain interactions29
Ⅱ.7 State of the polymer31
Ⅱ.8 Effect of polymeric structure on Tg33
Ⅱ.9 Glass transition temperature depression40
Ⅱ.10 Thermal and chemical stability41
Ⅱ.11 Mechanical properties44
Ⅱ.12 Elastomers45
Ⅱ.13 Thermoplastic elastomers47
Ⅱ.14 Polyelectrolytes47
Ⅱ.15 Polymer blends49
Ⅱ.16 Membrane polymers51
Ⅱ.16.1 Porous membranes52
Ⅱ.16.2 Nonporous membranes59
Ⅱ.17 Inorganic membranes60
Ⅱ.17.1 Thermal stability60
Ⅱ.17.2 Chemical stabili61
Ⅱ.17.3 Mechanical stabili61
Ⅱ.18 Biological membranes62
Ⅱ.18.1 Synthetic biological membranes66
Ⅱ.19 Solved problems67
Ⅱ.20 Unsolved problems67
Ⅱ.21 Literature69
Ⅲ Preparation of synthetic membranes71
Ⅲ.1 Introduction71
Ⅲ.2 Preparation of synthetic membranes72
Ⅲ.3 Phase inversion membranes75
Ⅲ.3.1 Preparation by evaporation76
Ⅲ.3.2 Precipitation from the vapour phase76
Ⅲ.3.3 Precipitation by controlled evaporation76
Ⅲ.3.4 Thermal precipitation76
Ⅲ.3.5 Immersion precipitation77
Ⅲ.4 Preparation techniques for immersion precipitation77
Ⅲ.4.1 Flat membranes77
Ⅲ.4.2 Tubular membranes78
Ⅲ.5 Preparation techniques for composite membranes81
Ⅲ.5.1 Interfacial polymerisation82
Ⅲ.5.2 Dip-coating83
Ⅲ.5.3 Plasma polymerisation86
Ⅲ.5.4 Modification of homogeneous dense membranes87
Ⅲ.6 Phase separation in polymer systems89
Ⅲ.6.1 Introduction89
Ⅲ.6.1.1 Thermodynamics89
Ⅲ.6.2 Demixing processes99
Ⅲ.6.2.1 Binary mixtures99
Ⅲ.6.2.2 Ternary systems102
Ⅲ.6.3 Crystallisation104
Ⅲ.6.4 Gelation106
Ⅲ.6.5 Vitrification108
Ⅲ.6.6 Thermal precipitation109
Ⅲ.6.7 Immersion precipitation110
Ⅲ.6.8 Diffusional aspects114
Ⅲ.6.9 Mechanism of membrane formation117
Ⅲ.7 Influence of various parameters on membrane morphology123
Ⅲ.7.1 Choice of solvent-nonsolvent system123
Ⅲ.7.2 Choice of the polymer129
Ⅲ.7.3 Polymer concentration130
Ⅲ.7.4 Composition of the coagulation bath132
Ⅲ.7.5 Composition of the casting solution133
Ⅲ.7.6 Preparation of porous membranes - summary134
Ⅲ.7.7 Formation of integrally skinned membranes135
Ⅲ.7.7.1 Dry-wet phase separation process136
Ⅲ.7.7.2 Wet-phase separation process137
Ⅲ.7.8 Formation of macrovoids138
Ⅲ.8 Inorganic membranes141
Ⅲ.8.1 The sol-gel process141
Ⅲ.8.2 Membrane modification144
Ⅲ.8.3 Zeolite membranes144
Ⅲ.8.4 Glass membranes146
Ⅲ.8.5 Dense membranes147
Ⅲ.9 Solved problems147
Ⅲ.10 Unsolved problems147
Ⅲ.11 Literature154
Ⅳ Characterisation of membranes157
Ⅳ.1 Introduction157
Ⅳ.2 Membrane characterisation158
Ⅳ.3 Characterisation of porous membranes160
Ⅳ.3.1 Microfiiltration162
Ⅳ.3.1.1 Electron microscopy162
Ⅳ.3.1.2 Atomic force microscopy164
Ⅳ.3.1.3 Bubble-point method165
Ⅳ.3.1.4 Bubble-point with gas permeation167
Ⅳ.3.1.5 Mercury intrusion method168
Ⅳ.3.1.6 Permeability method169
Ⅳ.3.2 Ultrafiltration172
Ⅳ.3.2.1. Gas adsorption-desorption173
Ⅳ.3.2.2 Thermoporometry176
Ⅳ.3.2.3 Permporometry179
Ⅳ.3.2.4 Liquid displacement181
Ⅳ.3.2.5 Solute rejection measurements183
Ⅳ.4 Characterisation of ionic membranes188
Ⅳ.4.1 Electrokinetic phenomena189
Ⅳ.4.2 Electro-osmosis192
Ⅳ.5 Characterisation of nonporous membranes192
Ⅳ.5.1 Permeability methods194
Ⅳ.5.2 Physical methods195
Ⅳ.5.2.1 DCS/DTA methods195
Ⅳ.5.2.2 Density measurements197
Ⅳ.5.2.2.1 Density gradient column197
Ⅳ.5.2.2.2 Densical determination by the Archimedes principle198
Ⅳ.5.2.3 Wide-angle X-ray diffraction (WAXD)198
Ⅳ.5.3 Plasma etching199
Ⅳ.5.4 Surface analysis methods201
Ⅳ.6 Solved problems204
Ⅳ.7 Unsolved problems204
Ⅳ.8 Literature208
Ⅴ Transport in membranes210
Ⅴ.1 Introduction210
Ⅴ.2 Driving forces212
Ⅴ.3 Nonequilibrium thermodynamics214
Ⅴ.4 Transport through porous membranes224
Ⅴ.4.1 Transport of gases through porous membranes225
Ⅴ.4.1.1 Knudsen flow226
Ⅴ.4.2 Friction model228
Ⅴ.5 Transport through nonporous membranes232
Ⅴ.5.1 Transport in ideal systems239
Ⅴ.5.1.1 Determination of the diffusion coefficient243
Ⅴ.5.1.2 Determination of the solubility coefficient244
Ⅴ.5.1.3 Effect of temperature on the permeability coeffiicient246
Ⅴ.5.2 Interactive systems248
Ⅴ.5.2.1 Free volume theory251
Ⅴ.5.2.2 Clustering254
Ⅴ.5.2.3 Solubility of liquid mixtures255
Ⅴ.5.2.4 Transport of single liquids257
Ⅴ.5.2.5 Transport of liquid mixtures258
Ⅴ.5.3 Effect of crystallinity259
Ⅴ.6 Transport through membranes.A unified approach260
Ⅴ.6.1 Reverse osmosis264
Ⅴ.6.2 Dialysis266
Ⅴ.6.3 Gas permeation266
Ⅴ.6.4 Pervaporation267
Ⅴ.7 Transport in ion-exchange membranes267
Ⅴ.8 Solved problems271
Ⅴ.9 Unsolved problems272
Ⅴ.8 Literature278
Ⅵ Membrane processes280
Ⅵ.1 Introduction280
Ⅵ.2 Osmosis282
Ⅵ.3 Pressure driven membrane processes284
Ⅵ.3.1 Introduction284
Ⅵ.3.2 Microfiltration286
Ⅵ.3.2.1 Membranes for microfiltration288
Ⅵ.3.2.2 Industrial applications292
Ⅵ.3.2.3 Summary of microfiltration292
Ⅵ.3.3 Ultrafiltration293
Ⅵ.3.3.1 Membranes for ultrafiltration294
Ⅵ.3.3.2 Applications295
Ⅵ.3.3.3 Summary of ultrafiltration296
Ⅵ.3.4 Reverse osmosis and nanofiiltration297
Ⅵ.3.4.1 Membranes for reverse osmosis and nanofiltration299
Ⅵ.3.4.2 Applications301
Ⅵ.3.4.3 Summary of nanofiltration302
Ⅵ.3.4.3 Summary of reverse osmosis303
Ⅵ.3.5 Pressure retarded osmosis303
Ⅵ.3.5.1 Summary of pressure retarded osmosis305
Ⅵ.3.6 Piezodialysis305
Ⅵ.3.6.1 Summary of piezodialysis306
Ⅵ.4 Concentration as driving force307
Ⅵ.4.1 Introduction307
Ⅵ.4.2 Gas separation308
Ⅵ.4.2 Gas separation308
Ⅵ.4.2.1 Gas separation in porous membranes308
Ⅵ.4.2.2 Gas separation in nonporous membranes309
Ⅵ.4.2.3 Aspects of separation311
Ⅵ.4.2.4 Joule - Thomson effect317
Ⅵ.4.2.5 Membranes for gas separation319
Ⅵ.4.2.6 Applications323
Ⅵ.4.2.7 Summary of gas separation324
Ⅵ.4.3 Pervaporation325
Ⅵ.4.3.1 Aspects of separation327
Ⅵ.4.3.2 Membranes for pervaporation333
Ⅵ.4.3.3 Applications336
Ⅵ.4.3.4 Summary of pervaporation339
Ⅵ.4.4 Carrier mediated transport339
Ⅵ.4.4.1 Liquid membranes340
Ⅵ.4.4.2 Aspects of separation347
Ⅵ.4.4.3 Liquid membrane development352
Ⅵ.4.4.4 Choice of the organic solvent353
Ⅵ.4.4.5 Choice of the carrier355
Ⅵ.4.4.6 Applications357
Ⅵ.4.4.7 Summary of carrier mediated transport357
Ⅵ.4.5 Dialysis358
Ⅵ.4.5.1 Transport359
Ⅵ.4.5.2 Membranes360
Ⅵ.4.5.3 Applications360
Ⅵ.4.5.4 Summary of dialysis361
Ⅵ.4.6 Diffusion dialysis361
Ⅵ.4.6.1 Applications363
Ⅵ.4.6.2 Summary of diffusion dialysis364
Ⅵ.5 Thermally driven membrane processes364
Ⅵ.5.1 Introduction364
Ⅵ.5.2 Membrane distillation365
Ⅵ.5.2.1 Process parameters367
Ⅵ.5.2.2 Membranes370
Ⅵ.5.2.3 Applications370
Ⅵ.5.2.4 Summary of membrane distillation373
Ⅵ.6 Membrane contactors373
Ⅵ.6.1 Gas-liquid contactor375
Ⅵ.6.1.1 Introduction375
Ⅵ.6.2 Liquid-liquid contactors377
Ⅵ.6.2.1 Introduction377
Ⅵ.6.3 Nonporous membrane contactors378
Ⅵ.6.4 Summary of membrane contactors379
Ⅵ.6.5 Thermo-osmosis380
Ⅵ.7 Electrically driven membrane processes380
Ⅵ.7.1 Introduction380
Ⅵ.7.2 Electrodialysis380
Ⅵ.7.2.1 Process parameters382
Ⅵ.7.2.2 Membranes for electrodialysis385
Ⅵ.7.2.3 Applications387
Ⅵ.7.2.3.1 Separation of amino acids387
Ⅵ.7.2.4 Summary of electrodialysis388
Ⅵ.7.3 Membrane electrolysis388
Ⅵ.7.3.1 The ’chlor-alkali’ process389
Ⅵ.7.3.2 Bipolar membranes390
Ⅵ.7.4 Fuel cells391
Ⅵ.7.5 Electrolytic regeneration of mixed-bed ion-exchange resin393
Ⅵ.8 Membrane reactors and membrane bioreactors394
Ⅵ.8.1 Membrane reactors395
Ⅵ.8.2 Non-selective membrane reactor396
Ⅵ.8.3 Membrane reactor in liquid phase reactions398
Ⅵ.8.4 Membrane bioreactors400
Ⅵ.9 Solved problems400
Ⅵ.10 Unsolved problems402
Ⅵ.11 Literature412
Ⅶ Polarisation phenomena and fouling416
Ⅶ.1 Introduction416
Ⅶ.2 Concentration polarisation418
Ⅶ.2.1 Concentration profiles423
Ⅶ.3 Turbulence promoters424
Ⅶ.4 Pressure drop426
Ⅶ.5 Characteristic flux behaviour in pressure driven membrane operations427
Ⅶ.6 Gel layer model429
Ⅶ.7 Osmotic pressure model431
Ⅶ.8 Boundary layer resistance model436
Ⅶ.9 Concentration polarisation in diffusive membrane separations440
Ⅶ.10 Concentration polarisation in electrodialysis442
Ⅶ.11 Temperature polarisation444
Ⅶ.12 Membrane fouling447
Ⅶ.12.1 Fouling tests in reverse osmosis451
Ⅶ.13 Methods to reduce fouling453
Ⅶ.14 Compaction456
Ⅶ.15 Solved problems456
Ⅶ.16 Unsolved problems457
Ⅶ.17 Literature463
Ⅷ Module and process design465
Ⅷ.1 Introduction465
Ⅷ.2 Plate-and-frame model466
Ⅷ.3 Spiral wound module468
Ⅷ.4 Tubular module469
Ⅷ.5 Capillary module470
Ⅷ.6 Hollow fiber module472
Ⅷ.7 Comparison of the module configurations473
Ⅷ.8 System design474
Ⅷ.9 Cross-flow operations475
Ⅷ.10 Hybrid dead-end/cross flow system478
Ⅷ.11 Cascade operations479
Ⅷ.12 Some examples of system design480
Ⅷ.12.1 Ultrapure water481
Ⅷ.12.2 Recovery of organic vapours482
Ⅷ.12.3 Desalination of seawater483
Ⅷ.12.4 Dehydration of ethanol484
Ⅷ.12.5 Economics485
Ⅷ.13 Process parameters486
Ⅷ.14 Reverse osmosis487
Ⅷ.15 Diafiltration491
Ⅷ.16 Gas separation and vapour permeation493
Ⅷ.16.1 Gas separation under complete mixing conditions494
Ⅷ.16.2 Gas separation under cross-flow conditions496
Ⅷ.17 Pervaporation498
Ⅷ.17.1 Complete mixing in pervaporation498
Ⅷ.17.2 Cross-flow in pervaporation500
Ⅷ.18 Pervaporation501
Ⅷ.19 Dialysis503
Ⅷ.20 Energy requirements505
Ⅷ.20.1 Pressure driven processes506
Ⅷ.20.2 Partial pressure driven processes507
Ⅷ.20.3 Concentration driven processes508
Ⅷ.21 Solved problems509
Ⅷ.22 Unsolved problems511
Ⅷ.23 Literature519
Appendix 1522
Appendix 2523
Answers to exercises: solved problems525
Answers to exercises: unsolved problems547
List of symbols553
Index557