图书介绍
分数维动力学 国内英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (俄罗斯)塔拉索夫著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040294736
- 出版时间:2010
- 标注页数:505页
- 文件大小:15MB
- 文件页数:518页
- 主题词:维-动力学-英文
PDF下载
下载说明
分数维动力学 国内英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ Fraction?l Continuous Models of Fractal Distributions1 Fractional Integration and Fractals3
1.1 Riemann-Liouville fractional integrals4
1.2 Liouville fractional integrals6
1.3 Riesz fractional integrals7
1.4 Metric and measure spaces9
1.5 Hausdorff measure10
1.6 Hausdorff dimension and fractals14
1.7 Box-counting dimension16
1.8 Mass dimension of fractal systems19
1.9 Elementary models of fractal distributions20
1.10 Functions and integrals on fractals22
1.11 Properties of integrals on fractals25
1.12 Integration over non-integer-dimensional space26
1.13 Multi-variable integration on fractals28
1.14 Mass distribution on fractals29
1.15 Density of states in Euclidean space31
1.16 Fractional integral and measure on the real axis32
1.17 Fractional integral and mass on the real axis34
1.18 Mass of fractal media36
1.19 Electric charge of fractal distribution38
1.20 Probability on fractals39
1.21 Fractal distribution of particles41
References44
2 Hydrodynamics of Fractal Media49
2.1 Introduction49
2.2 Equation of balance of mass50
2.3 Total time derivative of fractional integral51
2.4 Equation of continuity for fractal media54
2.5 Fractional integral equation of balance of momentum55
2.6 Differential equations of balance of momentum56
2.7 Fractional integral equation of balance of energy57
2.8 Differential equation of balance of energy58
2.9 Euler's equations for fractal media60
2.10 Navier-Stokes equations for fractal media62
2.11 Equilibrium equation for fractal media63
2.12 Bernoulli integral for fractal media64
2.13 Sound waves in fractal media66
2.14 One-dimensional wave equation in fractal media67
2.15 Conclusion69
References69
3 Fractal Rigid Body Dynamics73
3.1 Introduction73
3.2 Fractional equation for moment of inertia74
3.3 Moment of inertia of fractal rigid body ball76
3.4 Moment of inertia for fractal rigid body cylinder78
3.5 Equations of motion for fractal rigid body81
3.6 Pendulum with fractal rigid body82
3.7 Fractal rigid body rolling down an inclined plane84
3.8 Conclusion85
References86
4 Electrodynamics of Fractal Distributions of Charges and Fields89
4.1 Introduction89
4.2 Electric charge of fractal distribution90
4.3 Electric current for fractal distribution92
4.4 Gauss'theorem for fractal distribution93
4.5 Stokes'theorem for fractal distribution93
4.6 Charge conservation for fractal distribution94
4.7 Coulomb's and Biot-Savart laws for fractal distribution95
4.8 Gauss'law for fractal distribution96
4.9 Ampere's law for fractal distribution97
4.10 Integral Maxwell equations for fractal distribution98
4.11 Fractal distribution as an effective medium100
4.12 Electric multipole expansion for fractal distribution101
4.13 Electric dipole moment of fractal distribution103
4.14 Electric quadrupole moment of fractal distribution104
4.15 Magnetohydrodynamics of fractal distribution107
4.16 Stationary states in magnetohydrodynamics of fractal distributions110
4.17 Conclusion111
References112
5 Ginzburg-Landau Equation for Fractal Media115
5.1 Introduction115
5.2 Fractional generalization of free energy functional116
5.3 Ginzburg-Landau equation from free energy functional117
5.4 Fractional equations from variational equation118
5.5 Conclusion121
References121
6 Fokker-Planck Equation for Fractal Distributions of Probability123
6.1 Introduction123
6.2 Fractional equation for average values124
6.3 Fractional Chapman-Kolmogorov equation125
6.4 Fokker-Planck equation for fractal distribution127
6.5 Stationary solutions of generalized Fokker-Planck equation130
6.6 Conclusion132
References132
7 Statistical Mechanics of Fractal Phase Space Distributions135
7.1 Introduction135
7.2 Fractal distribution in phase space136
7.3 Fractional phase volume for configuration space136
7.4 Fractional phase volume for phase space139
7.5 Fractional generalization of normalization condition139
7.6 Continuity equation for fractal distribution in configuration space141
7.7 Continuity equation for fractal distribution in phase space142
7.8 Fractional average values for configuration space144
7.9 Fractional average values for phase space145
7.10 Generalized Liouville equation146
7.11 Reduced distribution functions147
7.12 Conclusion148
References150
Part Ⅱ Fractional Dynamics and Long-Range Interactions150
8 Fractional Dynamics of Media with Long-Range Interaction153
8.1 Introduction153
8.2 Equations of lattice vibrations and dispersion law155
8.3 Equations of motion for interacting particles160
8.4 Transform operation for discrete models162
8.5 Fourier series transform of equations of motion163
8.6 Alpha-interaction of particles166
8.7 Fractional spatial derivatives170
8.8 Riesz fractional derivatives and integrals174
8.9 Continuous limits of discrete equations177
8.10 Linear nearest-neighbor interaction180
8.11 Linear integer long-range alpha-interaction181
8.12 Linear fractional long-range alpha-interaction184
8.13 Fractional reaction-diffusion equation187
8.14 Nonlinear long-range alpha-interaction190
8.15 Fractional 3-dimensional lattice equation194
8.16 Fractional derivatives from dispersion law195
8.17 Fractal long-range interaction198
8.18 Fractal dispersion law203
8.19 Grünwald-Letnikov-Riesz long-range interaction206
8.20 Conclusion208
References209
9 Fractional Ginzburg-Landau Equation215
9.1 Introduction215
9.2 Particular solution of fractional Ginzburg-Landau equation216
9.3 Stability of plane-wave solution220
9.4 Forced fractional equation221
9.5 Conclusion222
References223
10 Psi-Series Approach to Fractional Equations227
10.1 Introduction227
10.2 Singular behavior of fractional equation228
10.3 Resonance terms of fractional equation229
10.4 Psi-series for fractional equation of rational order230
10.5 Next to singular behavior233
10.6 Conclusion235
References236
Part Ⅲ Fractional Spatial Dynamics241
11 Fractional Vector Calculus241
11.1 Introduction241
11.2 Generalization of vector calculus242
11.3 Fundamental theorem of fractional calculus247
11.4 Fractional differential vector operators250
11.5 Fractional integral vector operations253
11.6 Fractional Green's formula254
11.7 Fractional Stokes'formula257
11.8 Fractional Gauss'formula259
11.9 Conclusion261
References262
12 Fractional Exterior Calculus and Fractional Differential Forms265
12.1 Introduction265
12.2 Differential forms of integer order266
12.3 Fractional exterior derivative269
12.4 Fractional differential forms274
12.5 Hodge star operator279
12.6 Vector operations by differential forms281
12.7 Fractional Maxwell's equations in terms of fractional forms282
12.8 Caputo derivative in electrodynamics284
12.9 Fractional nonlocal Maxwell's equations285
12.10 Fractional waves287
12.11 Conclusion288
References289
13 Fractional Dynamical Systems293
13.1 Introduction293
13.2 Fractional generalization of gradient systems294
13.3 Examples of fractional gradient systems301
13.4 Hamiltonian dynamical systems305
13.5 Fractional generalization of Hamiltonian systems307
13.6 Conclusion311
References312
14 Fractional Calculus of Variations in Dynamics315
14.1 Introduction315
14.2 Hamilton's equations and variations of integer order315
14.3 Fractional variations and Hamilton's equations317
14.4 Lagrange's equations and variations of integer order319
14.5 Fractional variations and Lagrange's equations321
14.6 Helmholtz conditions and non-Lagrangian equations323
14.7 Fractional variations and non-Hamiltonian systems326
14.8 Fractional stability328
14.9 Conclusion330
References331
15 Fractional Statistical Mechanics335
15.1 Introduction335
15.2 Liouville equation with fractional derivatives336
15.3 Bogolyubov equation with fractional derivatives340
15.4 Vlasov equation with fractional derivatives343
15.5 Fokker-Planck equation with fractional derivatives345
15.6 Conclusion349
References350
Part Ⅳ Fractional Temporal Dynamics357
16 Fractional Temporal Electrodynamics357
16.1 Introduction357
16.2 Universal response laws358
16.3 Linear electrodynamics of medium360
16.4 Fractional equations for laws of universal response362
16.5 Fractional equations of the Curie-von Schweidler law364
16.6 Fractional Gauss'laws for electric field366
16.7 Universal fractional equation for electric field369
16.8 Universal fractional equation for magnetic field370
16.9 Fractional damping of magnetic field372
16.10 Conclusion373
References374
17 Fractional Nonholonomic Dynamics377
17.1 Introduction377
17.2 Nonholonomic dynamics378
17.3 Fractional temporal derivatives385
17.4 Fractional dynamics with nonholonomic constraints388
17.5 Constraints with fractional derivatives394
17.6 Equations of motion with fractional nonholonomic constraints396
17.7 Example of fractional nonholonomic constraints398
17.8 Fractional conditional extremum401
17.9 Hamilton's approach to fractional nonholonomic constraints403
17.10 Conclusion405
References406
18 Fractional Dynamics and Discrete Maps with Memory409
18.1 Introduction409
18.2 Discrete maps without memory410
18.3 Caputo and Riemann-Liouville fractional derivatives415
18.4 Fractional derivative in the kicked term and discrete maps418
18.5 Fractional derivative in the kicked term and dissipative discrete maps422
18.6 Fractional equation with higher order derivatives and discrete map425
18.7 Fractional generalization of universal map for 1<α≤2429
18.8 Fractional universal map for α>2434
18.9 Riemann-Liouville derivative and universal map with memory436
18.10 Caputo fractional derivative and universal map with memory441
18.11 Fractional kicked damped rotator map445
18.12 Fractional dissipative standard map447
18.13 Fractional Hénon map449
18.14 Conclusion450
References451
Part Ⅴ Fractional Quantum Dynamics457
19 Fractional Dynamics of Hamiltonian Quantum Systems457
19.1 Introduction457
19.2 Fractional power of derivative and Heisenberg equation458
19.3 Properties of fractional dynamics460
19.4 Fractional quantum dynamics of free particle462
19.5 Fractional quantum dynamics of harmonic oscillator463
19.6 Conclusion464
References465
20 Fractional Dynamics of Open Quantum Systems467
20.1 Introduction467
20.2 Fractional power of superoperator468
20.3 Fractional equation for quantum observables471
20.4 Fractional dynamical semigroup473
20.5 Fractional equation for quantum states475
20.6 Fractional non-Markovian quantum dynamics477
20.7 Fractional equations for quantum oscillator with friction478
20.8 Quantum self-reproducing and self-cloning482
20.9 Conclusion486
References487
21 Quantum Analogs of Fractional Derivatives491
21.1 Introduction491
21.2 Weyl quantization of differential operators492
21.3 Quantization of Riemann-Liouville fractional derivatives494
21.4 Quantization of Liouville fractional derivative496
21.5 Quantization of nondifferentiable functions497
21.6 Conclusion500
References501
Index503