图书介绍
流形导论 第2版 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![流形导论 第2版 英文版](https://www.shukui.net/cover/9/30967225.jpg)
- (法)图(LoringW.Tu)著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510084485
- 出版时间:2015
- 标注页数:411页
- 文件大小:50MB
- 文件页数:428页
- 主题词:流形-研究-英文
PDF下载
下载说明
流形导论 第2版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
A Brief Introduction1
Chapter 1 Euclidean Spaces3
1 Smooth Functions on a Euclidean Space3
1.1 C∞ Versus Analytic Functions4
1.2 Taylor's Theorem with Remainder5
Problems8
2 Tangent Vectors in Rn as Derivations10
2.1 The Directional Derivative10
2.2 Germs of Functions11
2.3 Derivations at a Point13
2.4 Vector Fields14
2.5 Vector Fields as Derivations16
Problems17
3 The Exterior Algebra of Multicovectors18
3.1 Dual Space19
3.2 Permutations20
3.3 Multilinear Functions22
3.4 The Permutation Action on Multilinear Functions23
3.5 The Symmetrizing and Alternating Operators24
3.6 The Tensor Product25
3.7 The Wedge Product26
3.8 Anticommutativity of the Wedge Product27
3.9 Associativity of the Wedge Product28
3.10 A Basis for k-Covectors31
Problems32
4 Differential Forms on Rn34
4.1 Differential 1-Forms and the Differential of a Function34
4.2 Differential k-Forms36
4.3 Differential Forms as Multilinear Functions on Vector Fields37
4.4 The Exterior Derivative38
4.5 Closed Forms and Exact Forms40
4.6 Applications to Vector Calculus41
4.7 Convention on Subscripts and Superscripts44
Problems44
Chapter 2 Manifolds48
5 Manifolds48
5.1 Topological Manifolds48
5.2 Compatible Charts49
5.3 Smooth Manifolds52
5.4 Examples of Smooth Manifolds53
Problems57
6 Smooth Maps on a Manifold59
6.1 Smooth Functions on a Manifold59
6.2 Smooth Maps Between Manifolds61
6.3 Diffeomorphisms63
6.4 Smoothness in Terms of Components63
6.5 Examples of Smooth Maps65
6.6 Partial Derivatives67
6.7 The Inverse Function Theorem68
Problems70
7 Quotients71
7.1 The Quotient Topology71
7.2 Continuity of a Map on a Quotient72
7.3 Identification of a Subset to a Point73
7.4 A Necessary Condition for a Hausdorff Quotient73
7.5 Open Equivalence Relations74
7.6 Real Projective Space76
7.7 The Standard C∞ Atlas on a Real Projective Space79
Problems81
Chapter 3 The Tangent Space86
8 The Tangent Space86
8.1 The Tangent Space at a Point86
8.2 The Differential of a Map87
8.3 The Chain Rule88
8.4 Bases for the Tangent Space at a Point89
8.5 A Local Expression for the Differential91
8.6 Curves in a Manifold92
8.7 Computing the Differential Using Curves95
8.8 Immersions and Submersions96
8.9 Rank,and Critical and Regular Points96
Problems98
9 Submanifolds100
9.1 Submanifolds100
9.2 Level Sets of a Function103
9.3 The Regular Level Set Theorem105
9.4 Examples of Regular Submanifolds106
Problems108
10 Categories and Functors110
10.1 Categories110
10.2 Functors111
10.3 The Dual Functor and the Multicovector Functor113
Problems114
11 The Rank of a Smooth Map115
11.1 Constant Rank Theorem115
11.2 The Immersion and Submersion Theorems118
11.3 Images of Smooth Maps120
11.4 Smooth Maps into a Submanifold124
11.5 The Tangent Plane to a Surface in R3125
Problems127
12 The Tangent Bundle129
12.1 The Topology of the Tangent Bundle129
12.2 The Manifold Structure on the Tangent Bundle132
12.3 Vector Bundles133
12.4 Smooth Sections136
12.5 Smooth Frames137
Problems139
13 Bump Functions and Partitions of Unity140
13.1 C∞ Bump Functions140
13.2 Partitions of Unity145
13.3 Existence of a Partition of Unity146
Problems147
14 Vector Fields149
14.1 Smoothness of a Vector Field149
14.2 Integral Curves152
14.3 Local Flows154
14.4 The Lie Bracket157
14.5 The Pushforward of Vector Fields159
14.6 Related Vector Fields159
Problems161
Chapter 4 Lie Groups and Lie Algebras164
15 Lie Groups164
15.1 Examples of Lie Groups164
15.2 Lie Subgroups167
15.3 The Matrix Exponential169
15.4 The Trace of a Matrix171
15.5 The Differential of det at the Identity174
Problems174
16 Lie Algebras178
16.1 Tangent Space at the Identity of a Lie Group178
16.2 Left-Invariant Vector Fields on a Lie Group180
16.3 The Lie Algebra of a Lie Group182
16.4 The Lie Bracket on gl(n,R)183
16.5 The Pushforward of Left-Invariant Vector Fields184
16.6 The Differential as a Lie Algebra Homomorphism185
Problems187
Chapter 5 Differential Forms190
17 Differential 1-Forms190
17.1 The Differential of a Function191
17.2 Local Expression for a Differential 1-Form191
17.3 The Cotangent Bundle192
17.4 Characterization of C∞ 1-Forms193
17.5 Pullback of 1-Forms195
17.6 Restriction of 1-Forms to an Immersed Submanifold197
Problems199
18 Differential k-Forms200
18.1 Differential Forms200
18.2 Local Expression for a k-Form202
18.3 The Bundle Point of View203
18.4 Smooth k-Forms203
18.5 Pullback of k-Forms204
18.6 The Wedge Product205
18.7 Differential Forms on a Circle206
18.8 Invariant Forms on a Lie Group207
Problems208
19 The Exterior Derivative210
19.1 Exterior Derivative on a Coordinate Chart211
19.2 Local Operators211
19.3 Existence of an Exterior Derivative on a Manifold212
19.4 Uniqueness of the Exterior Derivative213
19.5 Exterior Differentiation Under a Pullback214
19.6 Restriction of k-Forms to a Submanifold216
19.7 A Nowhere-Vanishing 1-Form on the Circle216
Problems218
20 The Lie Derivative and Interior Multiplication221
20.1 Families of Vector Fields and Differential Forms221
20.2 The Lie Derivative of a Vector Field223
20.3 The Lie Derivative of a Differential Form226
20.4 Interior Multiplication227
20.5 Properties of the Lie Derivative229
20.6 Global Formulas for the Lie and Exterior Derivatives232
Problems233
Chapter 6 Integration236
21 Orientations236
21.1 Orientations of a Vector Space236
21.2 Orientations and n-Covectors238
21.3 Orientations on a Manifold240
21.4 Orientations and Differential Forms242
21.5 Orientations and Atlases245
Problems246
22 Manifolds with Boundary248
22.1 Smooth Invariance of Domain in Rn248
22.2 Manifolds with Boundary250
22.3 The Boundary of a Manifold with Boundary253
22.4 Tangent Vectors,Differential Forms,and Orientations253
22.5 Outward-Pointing Vector Fields254
22.6 Boundary Orientation255
Problems256
23 Integration on Manifolds260
23.1 The Riemann Integral of a Function on Rn260
23.2 Integrability Conditions262
23.3 The Integral of an n-Form on Rn263
23.4 Integral of a Differential Form over a Manifold265
23.5 Stokes's Theorem269
23.6 Line Integrals and Green's Theorem271
Problems272
Chapter 7 De Rham Theory274
24 De Rham Cohomology274
24.1 De Rham Cohomology274
24.2 Examples of de Rham Cohomology276
24.3 Diffeomorphism Invariance278
24.4 The Ring Structure on de Rham Cohomology279
Problems280
25 The Long Exact Sequence in Cohomology281
25.1 Exact Sequences281
25.2 Cohomology of Cochain Complexes283
25.3 The Connecting Homomorphism284
25.4 The Zig-Zag Lemma285
Problems287
26 The Mayer-Vietoris Sequence288
26.1 The Mayer-Vietoris Sequence288
26.2 The Cohomology of the Circle292
26.3 The Euler Characteristic295
Problems295
27 Homotopy Invariance296
27.1 Smooth Homotopy296
27.2 Homotopy Type297
27.3 Deformation Retractions299
27.4 The Homotopy Axiom for de Rham Cohomology300
Problems301
28 Computation of de Rham Cohomology302
28.1 Cohomology Vector Space of a Torus302
28.2 The Cohomology Ring of a Torus303
28.3 The Cohomology of a Surface of Genus g306
Problems310
29 Proof of Homotopy Invariance311
29.1 Reduction to Two Sections311
29.2 Cochain Homotopies312
29.3 Differential Forms on M×R312
29.4 A Cochain Homotopy Between i? and i?314
29.5 Verification of Cochain Homotopy315
Problems316
Appendices317
A Point-Set Topology317
A.1 Topological Spaces317
A.2 Subspace Topology320
A.3 Bases321
A.4 First and Second Countability323
A.5 Separation Axioms324
A.6 Product Topology326
A.7 Continuity327
A.8 Compactness329
A.9 Boundedness in Rn332
A.10 Connectedness332
A.11 Connected Components333
A.12 Closure334
A.13 Convergence336
Problems337
B The Inverse Function Theorem on Rn and Related Results339
B.1 The Inverse Function Theorem339
B.2 The Implicit Function Theorem339
B.3 Constant Rank Theorem343
Problems344
C Existence of a Partition of Unity in General346
D Linear Algebra349
D.1 Quotient Vector Spaces349
D.2 Linear Transformations350
D.3 Direct Product and Direct Sum351
Problems352
E Quaternions and the Symplectic Group353
E.1 Representation of Linear Maps by Matrices354
E.2 Quaternionic Conjugation355
E.3 Quaternionic Inner Product356
E.4 Representations of Quaternions by Complex Numbers356
E.5 Quaternionic Inner Product in Terms of Complex Components357
E.6 H-Linearity in Terms of Complex Numbers357
E.7 Symplectic Group358
Problems359
Solutions to Selected Exercises Within the Text361
Hints and Solutions to Selected End-of-Section Problems367
List of Notations387
References395
Index397