图书介绍
量子力学、统计学、聚合物物理学和金融市场中的路径积分 第2分册 第5版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (德)克莱尼特著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510087752
- 出版时间:2015
- 标注页数:1579页
- 文件大小:6MB
- 文件页数:43页
- 主题词:量子力学-研究-英文
PDF下载
下载说明
量子力学、统计学、聚合物物理学和金融市场中的路径积分 第2分册 第5版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Fundamentals1
1.1 Classical Mechanics1
1.2 Relativistic Mechanics in Curved Spacetime10
1.3 Quantum Mechanics11
1.3.1 Bragg Reflections and Interference12
1.3.2 Matter Waves13
1.3.3 Schr?dinger Equation15
1.3.4 Particle Current Conservation17
1.4 Dirac's Bra-Ket Formalism18
1.4.1 Basis Transformations18
1.4.2 Bracket Notation20
1.4.3 Continuum Limit22
1.4.4 Generalized Functions23
1.4.5 Schr?dinger Equation in Dirac Notation25
1.4.6 Momentum States26
1.4.7 Incompleteness and Poisson's Summation Formula28
1.5 Observables31
1.5.1 Uncertainty Relation32
1.5.2 Density Matrix and Wigner Function33
1.5.3 Generalization to Many Particles34
1.6 Time Evolution Operator34
1.7 Properties of the Time Evolution Operator37
1.8 Heisenberg Picture of Quantum Mechanics39
1.9 Interaction Picture and Perturbation Expansion42
1.10 Time Evolution Amplitude43
1.11 Fixed-Energy Amplitude45
1.12 Free-Particle Amplitudes47
1.13 Quantum Mechanics of General Lagrangian Systems51
1.14 Particle on the Surface of a Sphere57
1.15 Spinning Top59
1.16 Scattering67
1.16.1 Scattering Matrix67
1.16.2 Cross Section68
1.16.3 Born Approximation70
1.16.4 Partial Wave Expansion and Eikonal Approximation70
1.16.5 Scattering Amplitude from Time Evolution Amplitude72
1.16.6 Lippmann-Schwinger Equation72
1.17 Classical and Quantum Statistics76
1.17.1 Canonical Ensemble77
1.17.2 Grand-Canonical Ensemble77
1.18 Density of States and Tracelog82
Appendix 1A Simple Time Evolution Operator84
Appendix 1B Convergence of the Fresnel Integral84
Appendix 1C The Asymmetric Top85
Notes and References87
2 Path Integrals—Elementary Properties and Simple Solutions89
2.1 Path Integral Representation of Time Evolution Amplitudes89
2.1.1 Sliced Time Evolution Amplitude89
2.1.2 Zero-Hamiltonian Path Integral91
2.1.3 Schr?dinger Equation for Time Evolution Amplitude92
2.1.4 Convergence of of the Time-Sliced Evolution Amplitude93
2.1.5 Time Evolution Amplitude in Momentum Space94
2.1.6 Quantum-Mechanical Partition Function96
2.1.7 Feynman's Configuration Space Path Integral97
2.2 Exact Solution for the Free Particle101
2.2.1 Direct Solution101
2.2.2 Fluctuations around the Classical Path102
2.2.3 Fluctuation Factor104
2.2.4 Finite Slicing Properties of Free-Particle Amplitude111
2.3 Exact Solution for Harmonic Oscillator112
2.3.1 Fluctuations around the Classical Path112
2.3.2 Fluctuation Factor114
2.3.3 The iη-Prescription and Maslov-Morse Index115
2.3.4 Continuum Limit116
2.3.5 Useful Fluctuation Formulas117
2.3.6 Oscillator Amplitude on Finite Time Lattice119
2.4 Gelfand-Yaglom Formula120
2.4.1 Recursive Calculation of Fluctuation Determinant121
2.4.2 Examples121
2.4.3 Calculation on Unsliced Time Axis123
2.4.4 D'Alembert's Construction124
2.4.5 Another Simple Formula125
2.4.6 Generalization to D Dimensions127
2.5 Harmonic Oscillator with Time-Dependent Frequency127
2.5.1 Coordinate Space128
2.5.2 Momentum Space130
2.6 Free-Particle and Oscillator Wave Functions132
2.7 General Time-Dependent Harmonic Action134
2.8 Path Integrals and Quantum Statistics135
2.9 Density Matrix138
2.10 Quantum Statistics of the Harmonic Oscillator143
2.11 Time-Dependent Harmonic Potential148
2.12 Functional Measure in Fourier Space151
2.13 Classical Limit154
2.14 Calculation Techniques on Sliced Time Axis via the Poisson Formula155
2.15 Field-Theoretic Definition of Harmonic Path Integrals by Analytic Regularization158
2.15.1 Zero-Temperature Evaluation of the Frequency Sum159
2.15.2 Finite-Temperature Evaluation of the Frequency Sum162
2.15.3 Quantum-Mechanical Harmonic Oscillator164
2.15.4 Tracelog of the First-Order Differential Operator165
2.15.5 Cradient Expansion of the One-Dimensional Tracelog167
2.15.6 Duality Transformation and Low-Temperature Expansion168
2.16 Finite-N Behavior of Thermodynamic Quantities175
2.17 Time Evolution Amplitude of Freely Falling Particle177
2.18 Charged Particle in Magnetic Field179
2.18.1 Action179
2.18.2 Gauge Properties182
2.18.3 Time-Sliced Path Integration182
2.18.4 Classical Action184
2.18.5 Translational Invariance185
2.19 Charged Particle in Magnetic Field plus Harmonic Potential186
2.20 Gauge Invariance and Alternative Path Integral Representation188
2.21 Velocity Path Integral189
2.22 Path Integral Representation of the Scattering Matrix190
2.22.1 General Development190
2.22.2 Improved Formulation193
2.22.3 Eikonal Approximation to the Scattering Amplitude194
2.23 Heisenberg Operator Approach to Time Evolution Amplitude194
2.23.1 Free Particle195
2.23.2 Harmonic Oscillator197
2.23.3 Charged Particle in Magnetic Field197
Appendix 2A Baker-Campbell-Hausdorff Formula and Magnus Expansion201
Appendix 2B Direct Calculation of the Time-Sliced Oscillator Amplitude204
Appendix 2C Derivation of Mehler Formula205
Notes and References206
3 External Sources,Correlations,and Perturbation Theory209
3.1 External Sources209
3.2 Green Function of Harmonic Oscillator213
3.2.1 Wronski Construction213
3.2.2 Spectral Representation217
3.3 Green Functions of First-Crder Differential Equation219
3.3.1 Time-Independent Frequency219
3.3.2 Time-Dependent Frequency226
3.4 Summing Spectral Representation of Green Function229
3.5 Wronski Construction for Periodic and Antiperiodic Green Functions231
3.6 Time Evolution Amplitude in Presence of Source Term232
3.7 Time Evolution Amplitude at Fixed Path Average236
3.8 External Source in Quantum-Statistical Path Integral237
3.8.1 Continuation of Real-Time Result238
3.8.2 Calculation at Imaginary Time242
3.9 Lattice Green Function249
3.10 Correlation Functions,Generating Functional,and Wick Expansion249
3.10.1 Real-Time Correlation Functions252
3.11 Correlation Functions of Charged Particle in Magnetic Field254
3.12 Correlation Functions in Canonical Path Integral255
3.12.1 Harmonic Correlation Functions256
3.12.2 Relations between Various Amplitudes258
3.12.3 Harmonic Generating Functionals259
3.13 Particle in Heat Bath262
3.14 Heat Bath of Photons266
3.15 Harmonic Oscillator in Ohmic Heat Bath268
3.16 Harmonic Oscillator in Photon Heat Bath271
3.17 Perturbation Expansion of Anharmonic Systems272
3.18 Rayleigh-Schr?dinger and Brillouin-Wigner Perturbation Expansion276
3.19 Level-Shifts and Perturbed Wave Functions from Schr?dinger Equation280
3.20 Calculation of Perturbation Series via Feynman Diagrams282
3.21 Perturbative Definition of Interacting Path Integrals287
3.22 Generating Functional of Connected Correlation Functions288
3.22.1 Connectedness Structure of Correlation Functions289
3.22.2 Correlation Functions versus Connected Correlation Functions292
3.22.3 Functional Generation of Vacuum Diagrams294
3.22.4 Correlation Functions from Vacuum Diagrams298
3.22.5 Generating Functional for Vertex Functions.Effective Action300
3.22.6 Ginzburg-Landau Approximation to Generating Functional305
3.22.7 Composite Fields306
3.23 Path Integral Calculation of Effective Action by Loop Expansion307
3.23.1 General Formalism307
3.23.2 Mean-Field Approximation308
3.23.3 Corrections from Quadratic Fluctuations312
3.23.4 Effective Action to Second Order in ?315
3.23.5 Finite-Temperature Two-Loop Effective Action319
3.23.6 Background Field Method for Effective Action321
3.24 Nambu-Goldstone Theorem324
3.25 Effective Classical Potential326
3.25.1 Effective Classical Boltzmann Factor327
3.25.2 Effective Classical Hamiltonian330
3.25.3 High-and Low-Temperature Behavior331
3.25.4 Alternative Candidate for Effective Classical Potential332
3.25.5 Harmonic Correlation Function without Zero Mode333
3.25.6 Perturbation Expansion334
3.25.7 Effective Potential and Magnetization Curves336
3.25.8 First-Order Perturbative Result338
3.26 Perturbative Approach to Scattering Amplitude340
3.26.1 Generating Functional340
3.26.2 Application to Scattering Amplitude341
3.26.3 First Correction to Eikonal Approximation341
3.26.4 Rayleigh-Schr?dinger Expansion of Scattering Amplitude342
3.27 Functional Determinants from Green Functions344
Appendix 3A Matrix Elements for General Potential350
Appendix 3B Energy Shifts for gx4/4-Interaction351
Appendix 3C Recursion Relations for Perturbation Coefficients353
3C.1 One-Dimensional Interaction x4353
3C.2 General One-Dimensional Interaction356
3C.3 Cumulative Treatment of Interactions x4 and x3356
3C.4 Ground-State Energy with External Current358
3C.5 Recursion Relation for Effective Potential360
3C.6 Interaction r4 in D-Dimensional Radial Oscillator363
3C.7 Interaction r2q in D Dimensions364
3C.8 Polynomial Interaction in D Dimensions364
Appendix 3D Feynman Integrals for T≠0364
Notes and References367
4 Semiclassical Time Evolution Amplitude369
4.1 Wentzel-Kramers-Brillouin (WKB) Approximation369
4.2 Saddle Point Approximation376
4.2.1 Ordinary Integrals376
4.2.2 Path Integrals379
4.3 Van Vleck-Pauli-Morette Determinant385
4.4 Fundamental Composition Law for Semiclassical Time Evolution Amplitude389
4.5 Semiclassical Fixed-Energy Amplitude391
4.6 Semiclassical Amplitude in Momentum Space393
4.7 Semiclassical Quantum-Mechanical Partition Function395
4.8 Multi-Dimensional Systems400
4.9 Quantum Corrections to Classical Density of States405
4.9.1 One-Dimensional Case406
4.9.2 Arbitrary Dimensions408
4.9.3 Bilocal Density of States409
4.9.4 Gradient Expansion of Tracelog of Hamiltonian Operator411
4.9.5 Local Density of States on Circle415
4.9.6 Quantum Corrections to Bohr-Sommerfeld Approximation416
4.10 Thomas-Fermi Model of Neutral Atoms419
4.10.1 Semiclassical Limit419
4.10.2 Self-Consistent Field Equation421
4.10.3 Energy Functional of Thomas-Fermi Atom423
4.10.4 Calculation of Energies424
4.10.5 Virial Theorem427
4.10.6 Exchange Energy428
4.10.7 Quantum Correction Near Origin429
4.10.8 Systematic Quantum Corrections to Thomas-Fermi Energies432
4.11 Classical Action of Coulomb System436
4.12 Semiclassical Scattering444
4.12.1 General Formulation444
4.12.2 Semiclassical Cross Section of Mott Scattering448
Appendix 4A Semiclassical Quantization for Pure Power Potentials449
Appendix 4B Derivation of Semiclassical Time Evolution Amplitude451
Notes and References455
5 Variational Perturbation Theory458
5.1 Variational Approach to Effective Classical Partition Function458
5.2 Local Harmonic Trial Partition Function459
5.3 Optimal Upper Bound464
5.4 Accuracy of Variational Approximation465
5.5 Weakly Bound Ground State Energy in Finite-Range Potential Well468
5.6 Possible Direct Generalizations469
5.7 Effective Classical Potential for Anharmonic Oscillator470
5.8 Particle Densities475
5.9 Extension to D Dimensions479
5.10 Application to Coulomb and Yukawa Potentials481
5.11 Hydrogen Atom in Strong Magnetic Field484
5.11.1 Weak-Field Behavior488
5.11.2 Effective Classical Hamiltonian488
5.12 Variational Approach to Excitation Energies492
5.13 Systematic Improvement of Feynman-Kleinert Approximation496
5.14 Applications of Variational Perturbation Expansion498
5.14.1 Anharmonic Oscillator at T=0499
5.14.2 Anharmonic Oscillator for T>0501
5.15 Convergence of Variational Perturbation Expansion505
5.16 Variational Perturbation Theory for Strong-Coupling Expansion512
5.17 General Strong-Coupling Expansions515
5.18 Variational Interpolation between Weak and Strong-Coupling Ex-pansions518
5.19 Systematic Improvement of Excited Energies520
5.20 Variational Treatment of Double-Well Potential521
5.21 Higher-Order Effective Classical Potential for Nonpolynomial In-teractions523
5.21.1 Evaluation of Path Integrals524
5.21.2 Higher-Order Smearing Formula in D Dimensions525
5.21.3 Isotropic Second-Order Approximation to Coulomb Problem527
5.21.4 Anisotropic Second-Order Approximation to Coulomb Prob-lem528
5.21.5 Zero-Temperature Limit529
5.22 Polarons533
5.22.1 Partition Function535
5.22.2 Harmonic Trial System537
5.22.3 Effective Mass542
5.22.4 Second-Order Correction543
5.22.5 Polaron in Magnetic Field,Bipolarons,etc544
5.22.6 Variational Interpolation for Polaron Energy and Mass545
5.23 Density Matrices548
5.23.1 Harmonic Oscillator548
5.23.2 Variational Perturbation Theory for Density Matrices550
5.23.3 Smearing Formula for Density Matrices552
5.23.4 First-Order Variational Approximation554
5.23.5 Smearing Formula in Higher Spatial Dimensions558
Appendix 5A Feynman Integrals for T≠0 without Zero Frequency560
Appendix 5B Proof of Scaling Relation for the Extrema of WN562
Appendix 5C Second-Order Shift of Polaron Energy564
Notes and References565
6 Path Integrals with Topological Constraints571
6.1 Point Particle on Circle571
6.2 Infinite Wall575
6.3 Point Particle in Box579
6.4 Strong-Coupling Theory for Particle in Box582
6.4.1 Partition Function583
6.4.2 Perturbation Expansion583
6.4.3 Variational Strong-Coupling Approximations585
6.4.4 Special Properties of Expansion587
6.4.5 Exponentially Fast Convergence588
Notes and References589
7 Many Particle Orbits—Statistics and Second Quantization591
7.1 Ensembles of Bose and Fermi Particle Orbits592
7.2 Bose-Einstein Condensation599
7.2.1 Free Bose Gas599
7.2.2 Bose Gas in Finite Box607
7.2.3 Effect of Interactions609
7.2.4 Bose-Einstein Condensation in Harmonic Trap615
7.2.5 Thermodynamic Functions615
7.2.6 Critical Temperature617
7.2.7 More General Anisotropic Trap620
7.2.8 Rotating Bose-Einstein Gas621
7.2.9 Finite-Size Corrections622
7.2.10 Entropy and Specific Heat623
7.2.11 Interactions in Harmonic Trap626
7.3 Gas of Free Fermions630
7.4 Statistics Interaction635
7.5 Fractional Statistics640
7.6 Second-Quantized Bose Fields641
7.7 Fluctuating Bose Fields644
7.8 Coherent States650
7.9 Second-Quantized Fermi Fields654
7.10 Fluctuating Fermi Fields654
7.10.1 Grassmann Variables654
7.10.2 Fermionic Functional Determinant657
7.10.3 Coherent States for Fermions661
7.11 Hilbert Space of Quantized Grassmann Variable663
7.11.1 Single Real Grassmann Variable663
7.11.2 Quantizing Harmonic Oscillator with Grassmann Variables666
7.11.3 Spin System with Grassmann Variables667
7.12 External Sources in a*,a-Path Integral672
7.13 Generalization to Pair Terms674
7.14 Spatial Degrees of Freedom676
7.14.1 Grand-Canonical Ensemble of Particle Orbits from Free Fluctuating Field676
7.14.2 First versus Second Quantization678
7.14.3 Interacting Fields678
7.14.4 Effective Classical Field Theory679
7.15 Bosonization681
7.15.1 Collective Field682
7.15.2 Bosonized versus Original Theory684
Appendix 7A Treatment of Singularities in Zeta-Function686
7A.1 Finite Box687
7A.2 Harmonic Trap689
Appendix 7B Experimental versus Theoretical Would-be Critical Temperature691
Notes and References692
8 Path Integrals in Polar and Spherical Coordinates697
8.1 Angular Decomposition in Two Dimensions697
8.2 Trouble with Feynman's Path Integral Formula in Radial Coordi-nates700
8.3 Cautionary Remarks704
8.4 Time Slicing Corrections707
8.5 Angular Decomposition in Three and More Dimensions711
8.5.1 Three Dimensions712
8.5.2 D Dimensions714
8.6 Radial Path Integral for Harmonic Oscillator and Free Particle720
8.7 Particle near the Surface of a Sphere in D Dimensions721
8.8 Angular Barriers near the Surface of a Sphere724
8.8.1 Angular Barriers in Three Dimensions725
8.8.2 Angular Barriers in Four Dimensions730
8.9 Motion on a Sphere in D Dimensions734
8.10 Path Integrals on Group Spaces739
8.11 Path Integral of Spinning Top741
8.12 Path Integral of Spinning Particle743
8.13 Berry Phase748
8.14 Spin Precession748
Notes and References750
9 Wave Functions752
9.1 Free Particle in D Dimensions752
9.2 Harmonic Oscillator in D Dimensions755
9.3 Free Particle from ω→0-Limit of Oscillator761
9.4 Charged Particle in Uniform Magnetic Field763
9.5 Dirac δ-Function Potential770
Notes and References772
10 Spaces with Curvature and Torsion773
10.1 Einstein's Equivalence Principle774
10.2 Classical Motion of Mass Point in General Metric-Affine Space775
10.2.1 Equations of Motion775
10.2.2 Nonholonomic Mapping to Spaces with Torsion778
10.2.3 New Equivalence Principle784
10.2.4 Classical Action Principle for Spaces with Curvature and Torsion784
10.3 Path Integral in Metric-Affine Space789
10.3.1 Nonholonomic Transformation of Action789
10.3.2 Measure of Path Integration794
10.4 Completing the Solution of Path Integral on Surface of Sphere800
10.5 External Potentials and Vector Potentials802
10.6 Perturbative Calculation of Path Integrals in Curved Space804
10.6.1 Free and Interacting Parts of Action804
10.6.2 Zero Temperature807
10.7 Model Study of Coordinate Invariance809
10.7.1 Diagrammatic Expansion811
10.7.2 Diagrammatic Expansion in d Time Dimensions813
10.8 Calculating Loop Diagrams814
10.8.1 Reformulation in Configuration Space821
10.8.2 Integrals over Products of Two Distributions822
10.8.3 Integrals over Products of Fonr Distributions823
10.9 Distributions as Limits of Bessel Function825
10.9.1 Correlation Function and Derivatives825
10.9.2 Integrals over Products of Two Distributions827
10.9.3 Integrals over Products of Four Distributions828
10.10 Simple Rules for Calculating Singular Integrals830
10.11 Perturbative Calculation on Finite Time Intervals835
10.11.1 Diagrammatic Elements836
10.11.2 Cumulant Expansion of D-Dimensional Free-Particle Am-plitude in Curvilinear Coordinates837
10.11.3 Propagator in 1-εTime Dimensions839
10.11.4 Coordinate Independence for Dirichlet Boundary Conditions840
10.11.5 Time Evolution Amplitude in Curved Space846
10.11.6 Covariant Results for Arbitrary Coordinates852
10.12 Effective Classical Potential in Curved Space857
10.12.1 Covariant Fluctuation Expansion858
10.12.2 Arbitrariness of qμ0861
10.12.3 Zero-Mode Properties862
10.12.4 Covariant Perturbation Expansion865
10.12.5 Covariant Result from Noncovariant Expansion866
10.12.6 Particle on Unit Sphere869
10.13 Covariant Effiective Action for Quantum Particle with Coordinate-Dependent Mass871
10.13.1 Formulating the Problem872
10.13.2 Gradient Expansion875
Appendix 10A Nonholonomic Gauge Transformations in Electromag-netism875
10A.1 Gradient Representation of Magnetic Field of Current Loops876
10A.2 Generating Magnetic Fields by Multivalued Gauge Transformations880
10A.3 Magnetic Monopoles881
10A.4 Minimal Magnetic Coupling of Particles from Multivalued Gauge Transformations883
10A.5 Gauge Field Representation of Current Loops and Monopoles884
Appendix 10B Comparison of Multivalued Basis Tetrads with Vierbein Fields886
Appendix 10C Cancellation of Powers of δ(0)888
Notes and References890
11 Schr?dinger Equation in General Metric-Affine Spaces894
11.1 Integral Equation for Time Evolution Amplitude894
11.1.1 From Recursion Relation to Schr?dinger Equation895
11.1.2 Alternative Evaluation898
11.2 Equivalent Path Integral Representations901
11.3 Potentials and Vector Potentials905
11.4 Unitarity Problem906
11.5 Alternative Attempts909
11.6 DeWitt-Seeley Expansion of Time Evolution Amplitude910
Appendix 11A Cancellations in Effective Potential914
Appendix 11B DeWitt's Amplitude916
Notes and References917
12 New Path Integral Formula for Singular Potentials918
12.1 Path Collapse in Feynman's formula for the Coulomb System918
12.2 Stable Path Integral with Singular Potentials921
12.3 Time-Dependent Regularization926
12.4 Relation to Schr?dinger Theory.Wave Functions928
Notes and References930
13 Path Integral of Coulomb System931
13.1 Pseudotime Evolution Amplitude931
13.2 Solution for the Two-Dimensional Coulomb System933
13.3 Absence of Time Slicing Corrections for D=2938
13.4 Solution for the Three-Dimensional Coulomb System943
13.5 Absence of Time Slicing Corrections for D=3949
13.6 Geometric Argument for Absence of Time Slicing Corrections951
13.7 Comparison with Schr?dinger Theory952
13.8 Angular Decomposition of Amplitude,and Radial Wave Functions957
13.9 Remarks on Geometry of Four-Dimensional uμ-Space961
13.10 Runge-Lenz-Pauli Group of Degeneracy963
13.11 Solution in Momentum Space964
13.11.1 Another Form of Action968
Appendix 13A Dynamical Group of Coulomb States969
Notes and References972
14 Solution of Further Path Integrals by Duru-Kleinert Method974
14.1 One-Dimensional Systems974
14.2 Derivation of the Effective Potential978
14.3 Comparison with Schr?dinger Quantum Mechanics982
14.4 Applications983
14.4.1 Radial Harmonic Oscillator and Morse System983
14.4.2 Radial Coulomb System and Morse System985
14.4.3 Equivalence of Radial Coulomb System and Radial Oscillator987
14.4.4 Angular Barrier near Sphere,and Rosen-Morse Potential994
14.4.5 Angular Barrier near Four-Dimensional Sphere,and General Rosen-Morse Potential997
14.4.6 Hulthén Potential and General Rosen-Morse Potential1000
14.4.7 Extended Hulthén Potential and General Rosen-Morse Potential1002
14.5 D-Dimensional Systems1003
14.6 Path Integral of the Dionium Atom1004
14.6.1 Formal Solution1005
14.6.2 Absence of Time Slicing Corrections1009
14.7 Time-Dependent Duru-Kleinert Transformation1012
Appendix 14A Affine Connection of Dionium Atom1015
Appendix 14B Algebraic Aspects of Dionium States1016
Notes and References1016
15 Path Integrals in Polymer Physics1019
15.1 Polymers and Ideal Random Chains1019
15.2 Moments of End-to-End Distribution1021
15.3 Exact End-to-End Distribution in Three Dimensions1024
15.4 Short-Distance Expansion for Long Polymer1026
15.5 Saddle Point Approximation to Three-Dimensional End-to-End Distribution1028
15.6 Path Integral for Continuous Gaussian Distribution1029
15.7 Stiff Polymers1032
15.7.1 Sliced Path Integral1034
15.7.2 Relation to Classical Heisenberg Model1035
15.7.3 End-to-End Distribution1037
15.7.4 Moments of End-to-End Distribution1037
15.8 Continuum Formulation1038
15.8.1 Path Integral1038
15.8.2 Correlation Functions and Moments1039
15.9 Schr?dinger Equation and Recursive Solution for Moments1043
15.9.1 Setting up the Schr?dinger Equation1043
15.9.2 Recursive Solution of Schr?dinger Equation1044
15.9.3 From Moments to End-to-End Distribution for D=31047
15.9.4 Large-Stiffness Approximation to End-to-End Distribution1049
15.9.5 Higher Loop Corrections1054
15.10 Excluded-Volume Effects1062
15.11 Flory's Argument1069
15.12 Polymer Field Theory1070
15.13 Fermi Fields for Self-Avoiding Lines1077
Appendix 15A Basic Integrals1078
Appendix 15B Loop Integrals1079
Appendix 15C Integrals Involving Modified Green Function1080
Notes and References1081
16 Polymers and Particle Orbits in Multiply Connected Spaces1084
16.1 Simple Model for Entangled Polymers1084
16.2 Entangled Fluctuating Particle Orbit:Aharonov-Bohm Effect1088
16.3 Aharonov-Bohm Effect and Fractional Statistics1096
16.4 Self-Entanglement of Polymer1101
16.5 The Gauss Invariant of Two Curves1115
16.6 Bound States of Polymers and Ribbons1117
16.7 Chern-Simons Theory of Entanglements1124
16.8 Entangled Pair of Polymers1127
16.8.1 Polymer Field Theory for Probabilities1129
16.8.2 Calculation of Partition Function1130
16.8.3 Calculation of Numerator in Second Moment1132
16.8.4 First Diagram in Fig.16.231134
16.8.5 Second and Third Diagrams in Fig.16.231135
16.8.6 Fourth Diagram in Fig.16.231136
16.8.7 Second Topological Moment1137
16.9 Chern-Simons Theory of Statistical Interaction1137
16.10 Second-Quantized Anyon Fields1140
16.11 Fractional Quantum Hall Effect1143
16.12 Anyonic Superconductivity1147
16.13 Non-Abelian Chern-Simons Theory1149
Appendix 16A Calculation of Feynman Diagrams in Polymer Entanglement1151
Appendix 16B Kauffman and BLM/Ho polynomials1153
Appendix 16C Skein Relation between Wilson Loop Integrals1153
Appendix 16D London Equations1156
Appendix 16E Hall Effect in Electron Gas1158
Notes and References1158
17 Tunneling1164
17.1 Double-Well Potential1164
17.2 Classical Solutions—Kinks and Antikinks1167
17.3 Quadratic Fluctuations1171
17.3.1 Zero-Eigenvalue Mode1177
17.3.2 Continuum Part of Fluctuation Factor1181
17.4 General Formula for Eigenvalue Ratios1183
17.5 Fluctuation Determinant from Classical Solution1185
17.6 Wave Functions of Double-Well1189
17.7 Gas of Kinks and Antikinks and Level Splitting Formula1190
17.8 Fluctuation Correction to Level Splitting1194
17.9 Tunneling and Decay1199
17.10 Large-Order Behavior of Perturbation Expansions1207
17.10.1 Growth Properties of Expansion Coefficients1208
17.10.2 Semiclassical Large-Order Behavior1211
17.10.3 Fluctuation Correction to the Imaginary Part and Large-Order Behavior1216
17.10.4 Variational Approach to Tunneling.Perturbation Coefficients to All Orders1219
17.10.5 Convergence of Variational Perturbation Expansion1227
17.11 Decay of Supercurrent in Thin Closed Wire1235
17.12 Decay of Metastable Thermodynamic Phases1247
17.13 Decay of Metastable Vacuum State in Quantum Field Theory1254
17.14 Crossover from Quantum Tunneling to Thermally Driven Decay1255
Appendix 17A Feynman Integrals for Fluctuation Correction1257
Notes and References1259
18 Nonequilibrium Quantum Statistics1262
18.1 Linear Response and Time-Dependent Green Functions for T≠01262
18.2 Spectral Representations of Green Functions for T≠01265
18.3 Other Important Green Functions1268
18.4 Hermitian Adjoint Operators1271
18.5 Harmonic Oscillator Green Functions for T≠01272
18.5.1 Creation Annihilation Operators1272
18.5.2 Real Field Operators1275
18.6 Nonequilibrium Green Functions1277
18.7 Perturbation Theory for Nonequilibrium Green Functions1286
18.8 Path Integral Coupled to Thermal Reservoir1289
18.9 Fokker-Planck Equation1295
18.9.1 Canonical Path Integral for Probability Distribution1296
18.9.2 Solving the Operator Ordering Problem1298
18.9.3 Strong Damping1303
18.10 Langevin Equations1307
18.11 Path Integral Solution of Klein-Kramers Equation1311
18.12 Stochastic Quantization1312
18.13 Stochastic Calculus1316
18.13.1 Kubo's stochastic Liouville equation1316
18.13.2 From Kubo's to Fokker-Planck Equations1317
18.13.3 Itō's Lemma1320
18.14 Solving the Langevin Equation1323
18.15 Heisenberg Picture for Probability Evolution1327
18.16 Supersymmetry1330
18.17 Stochastic Quantum Liouville Equation1332
18.18 Master Equation for Time Evolution1334
18.19 Relation to Quantum Langevin Equation1336
18.20 Electromagnetic Dissipation and Decoherence1337
18.20.1 Forward-Backward Path Integral1337
18.20.2 Master Equation for Time Evolution in Photon Bath1340
18.20.3 Line Width1341
18.20.4 Lamb shift1342
18.20.5 Langevin Equations1346
18.21 Fokker-Planck Equation in Spaces with Curvature and Torsion1347
18.22 Stochastic Interpretation of Quantum-Mechanical Amplitudes1348
18.23 Stochastic Equation for Schr?dinger Wave Function1350
18.24 Real Stochastic and Deterministic Equation for Schr?dinger Wave Function1351
18.24.1 Stochastic Differential Equation1352
18.24.2 Equation for Noise Average1352
18.24.3 Harmonic Oscillator1353
18.24.4 General Potential1353
18.24.5 Deterministic Equation1354
Appendix 18A Inequalities for Diagonal Green Functions1355
Appendix 18B General Generating Functional1359
Appendix 18C Wick Decomposition of Operator Products1363
Notes and References1364
19 Relativistic Particle Orbits1368
19.1 Special Features of Relativistic Path Integrals1370
19.1.1 Simplest Gauge Fixing1373
19.1.2 Partition Function of Ensemble of Closed Particle Loops1375
19.1.3 Fixed-Energy Amplitude1376
19.2 Tunneling in Relativistic Physics1377
19.2.1 Decay Rate of Vacuum in Electric Field1377
19.2.2 Birth of Universe1386
19.2.3 Friedmann Model1392
19.2.4 Tunneling of Expanding Universe1396
19.3 Relativistic Coulomb System1397
19.4 Relativistic Particle in Electromagnetic Field1400
19.4.1 Action and Partition Function1401
19.4.2 Perturbation Expansion1401
19.4.3 Lowest-Order Vacuum Polarization1404
19.5 Path Integral for Spin-1/2 Particle1408
19.5.1 Dirac Theory1408
19.5.2 Path Integral1412
19.5.3 Amplitude with Electromagnetic Interaction1414
19.5.4 Effective Action in Electromagnetic Field1417
19.5.5 Perturbation Expansion1418
19.5.6 Vacuum Polarization1419
19.6 Supersymmetry1421
19.6.1 Global Invariance1421
19.6.2 Local Invariance1422
Appendix 19A Proof of Same Quantum Physics of Modified Action1424
Notes and References1426
20 Path Integrals and Financial Markets1428
20.1 Fluctuation Properties of Financial Assets1428
20.1.1 Harmonic Approximation to Fluctuations1430
20.1.2 Lévy Distributions1432
20.1.3 Truncated Lévy Distributions1434
20.1.4 Asymmetric Truncated Lévy Distributions1439
20.1.5 Gamma Distribution1442
20.1.6 Boltzmann Distribution1443
20.1.7 Student or Tsallis Distribution1446
20.1.8 Tsallis Distribution in Momentum Space1448
20.1.9 Relativistic Particle Boltzmann Distribution1449
20.1.10 Meixner Distributions1450
20.1.11 Generalized Hyperbolic Distributions1451
20.1.12 Debye-Waller Factor for Non-Gaussian Fluctuations1454
20.1.13 Path Integral for Non-Gaussian Distribution1454
20.1.14 Time Evolution of Distribution1457
20.1.15 Central Limit Theorem1457
20.1.16 Additivity Property of Noises and Hamiltonians1459
20.1.17 Lévy-Khintchine Formula1460
20.1.18 Semigroup Property of Asset Distributions1461
20.1.19 Time Evolution of Moments of Distribution1463
20.1.20 Boltzmann Distribution1464
20.1.21 Fourier-Transformed Tsallis Distribution1467
20.1.22 Superposition of Gaussian Distributions1468
20.1.23 Fokker-Planck-Type Equation1470
20.1.24 Kramers-Moyal Equation1471
20.2 Itō-like Formula for Non-Gaussian Distributions1473
20.2.1 Continuous Time1473
20.2.2 Discrete Times1476
20.3 Martingales1477
20.3.1 Gaussian Martingales1477
20.3.2 Non-Gaussian Martingale Distributions1479
20.4 Origin of Semi-Heavy Tails1481
20.4.1 Pair of Stochastic Differential Equations1482
20.4.2 Fokker-Planck Equation1482
20.4.3 Solution of Fokker-Planck Equation1485
20.4.4 Pure x-Distribution1487
20.4.5 Long-Time Behavior1488
20.4.6 Tail Behavior for all Times1492
20.4.7 Path Integral Calculation1494
20.4.8 Natural Martingale Distribution1495
20.5 Time Series1496
20.6 Spectral Decomposition of Power Behaviors1497
20.7 Option Pricing1498
20.7.1 Black-Scholes Option Pricing Model1499
20.7.2 Evolution Equations of Portfolios with Options1501
20.7.3 Option Pricing for Gaussian Fluctuations1505
20.7.4 Option Pricing for Boltzmann Distribution1509
20.7.5 Option Pricing for General Non-Gaussian Fluctuations1509
20.7.6 Option Pricing for Fluctuating Variance1512
20.7.7 Perturbation Expansion and Smile1514
Appendix 20A Large-x Behavior of Truncated Lévy Distribution1517
Appendix 20B Gaussian Weight1520
Appendix 20C Comparison with Dow-Jones Data1521
Notes and References1522
Index1529