图书介绍

流形上的层 英文PDF|Epub|txt|kindle电子书版本网盘下载

流形上的层 英文
  • (日)柏原正树著 著
  • 出版社: 北京;西安:世界图书出版公司出版社
  • ISBN:9787510070303
  • 出版时间:2014
  • 标注页数:514页
  • 文件大小:69MB
  • 文件页数:524页
  • 主题词:上同调论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

流形上的层 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Introduction1

A Short History:Les débuts de la théorie des faisceaux by Christian Houzel7

Ⅰ.Homological algebra23

Summary23

1.1.Categories and functors23

1.2.Abelian categories26

1.3.Categories of complexes30

1.4.Mapping cones34

1.5.Triangulated categories38

1.6.Localization of categories41

1.7.Derived categories45

1.8.Derived functors50

1.9.Double complexes54

1.10.Bifunctors56

1.11.Ind-objects and pro-objects61

1.12.The Mittag-Leffler condition64

Exercises to Chapter Ⅰ69

Notes81

Ⅱ.Sheaves83

Summary83

2.1.Presheaves83

2.2.Sheaves85

2.3.Operations on sheaves90

2.4.Injective,flabby and flat sheaves98

2.5.Sheaves on locally compact spaces102

2.6.Cohomology of sheaves109

2.7.Some vanishing theorems116

2.8.Cohomology of coverings123

2.9.Examples of sheaves on real and complex manifolds125

Exercises to Chapter Ⅱ131

Notes138

Ⅲ.Poincaré-Verdier duality and Fourier-Sato transformation139

Summary139

3.1.Poincaré-Verdier duality140

3.2.Vanishing theorems on manifolds149

3.3.Orientation and duality151

3.4.Cohomologically constructible sheaves158

3.5.γ-topology161

3.6.Kernels164

3.7.Fourier-Sato transformation167

Exercises to Chapter Ⅲ178

Notes184

Ⅳ.Specialization and microlocalization185

Summary185

4.1.Normal deformation and normal cones185

4.2.Specialization190

4.3.Microlocalization198

4.4.The functor μhom201

Exercises to Chapter Ⅳ214

Notes215

Ⅴ.Micro-support of sheaves217

Summary217

5.1.Equivalent definitions of the micro-support218

5.2.Propagation222

5.3.Examples:micro-supports associated with locally closed subscts226

5.4.Functorial properties of the micro-support229

5.5.Micro-support of conic sheaves241

Exereises to Chapter Ⅴ245

Notes247

Ⅵ.Micro-support and microlocalization249

Summary249

6.1.The category Db(X;Ω)250

6.2.Normal cones in cotangent bundles258

6.3.Direct images263

6.4.Microlocalization268

6.5.Involutivity and propagation271

6.6.Sheaves in a neighborhood of an involutive manifold274

6.7.Microlocalization and inverse images275

Exercises to Chapter Ⅵ279

Notes281

Ⅶ.Contact transformations and pure sheaves283

Summary283

7.1.Microlocal kernels284

7.2.Contact transfornations for sheaves289

7.3.Microlocal composition of kernels293

7.4.Integral transformations for sheaves associated with submanifolds298

7.5.Pure sheaves309

Exercises to Chapter Ⅶ318

Notes318

Ⅷ.Constructible sheaves320

Summary320

8.1.Constructible sheaves on a simplicial complex321

8.2.Subanalytic sets327

8.3.Subanalytic isotropic sets and μ-stratifications328

8.4.R-constructible sheaves338

8.5.C-constructible sheaves344

8.6.Nearby-cycle functor and vanishing-cycle functor350

Exercises to Chapter Ⅷ356

Notes358

Ⅸ.Characteristic cycles360

Summary360

9.1.Index formula361

9.2.Subanalytic chains and subanalytic cycles366

9.3.Lagrangian cycles373

9.4.Characteristic cycles377

9.5.Microlocal index formulas384

9.6.Lefschetz fixed point formula389

9.7.Constructible functions and Lagrangian cycles398

Exercises to Chapter Ⅸ406

Notes409

Ⅹ.Perverse sheaves411

Summary411

10.1.t-structures411

10.2.Perverse sheaves on real manifolds419

10.3.Perverse sheaves on complex manifolds426

Exercises to Chapter Ⅹ438

Notes440

Ⅺ.Applications to O-modules and D-modules441

Summary441

11.1.The sheaf Ox442

11.2.Dx-modules445

11.3.Holomorphic solutions of Dx-modules453

11.4.Microlocal study of Ox459

11.5.Microfunctions466

Exercises to Chapter Ⅺ471

Notes474

Appendix:Symplectic geometry477

Summary477

A.1.Symplectic vector spaces477

A.2.Homogeneous symplectic manifolds481

A.3.Inertia index486

Exercises to the Appendix493

Notes495

Bibliography496

List of notations and conventions502

Index509

热门推荐