图书介绍

纳米结构中的输运PDF|Epub|txt|kindle电子书版本网盘下载

纳米结构中的输运
  • DavidK.Ferry,StephenM.Goodnick著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:750625638X
  • 出版时间:2002
  • 标注页数:512页
  • 文件大小:99MB
  • 文件页数:527页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

纳米结构中的输运PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introductio1

1.1 Nanostructures:The impact2

1.1.1 Progressing technology2

1.1.2 Some physical considerations4

1.2 Mesoscopic observables in nanostructures8

1.2.1 Ballistic transport8

1.2.2 Phase interference11

1.2.3 Universal conductance fluctuations13

1.2.4 Weak localization14

1.2.5 Carrier heating in nanostructures16

1.3 Space and time scales18

1.4 An introduction to the subsequent chapters19

1.5 What is omitted21

2 Quantum confined systems23

2.1 Nanostructure materials24

2.2 Quantization in heterojunction system26

2.2.1 Quantum wells and quasi-two-dimensional systems27

2.2.2 Coupled wells and superlattices31

2.2.3 Doped heterojunction systems and self-consistent solutions34

2.3 Lateral confinement:Quantum wires and quantum dots39

2.3.1 Nanolithography39

2.3.2 Quantum wire and quantum dot structures41

2.4 Electronic states in quantum wires and quantum dots44

2.5 Magnetic field effects in quantum confined systems46

2.5.1 Magnetic field in a 2DEG47

2.5.2 Magnetic field and 1D waveguides:Edge states51

2.6 Screening and collective excitations in low-dimensional systems54

2.6.1 Dielectric function in quasi-2D systems56

2.6.2 Dielectric function in quasi-1D systems62

2.7 Homogeneous transport in low-dimensional systems63

2.7.1 Semiclassical transport64

2.7.2 Relaxation time approximations66

2.7.3 Elastic scattering mechanisms68

2.7.4 Lattice scattering75

2.7.5 Experimental mobility in 2DEG heterostructures81

2.7.6 Magnetotransport in quantum confined structures84

3 Transmission in nanostructures91

3.1 Tunneling in planar barrier structures92

3.2 Wavefunction treatment of tunneling96

3.2.1 Single rectangular barrier97

3.2.2 The double barrier case104

3.2.3 Tunneling time111

3.3 Current in resonant tunneling diodes113

3.3.1 Coherent tunneling114

3.3.2 Incoherent or sequential tunneling118

3.3.3 Space charge effects and self-consistent solutions121

3.4 Landauer formula124

3.5 The multi-channel case128

3.6 Quantized conductance in nanostructures131

3.6.1 Experimental results in quantum point contacts131

3.6.2 Adiabatic transport model134

3.6.3 Temperature effects137

3.6.4 Inhomogeneous effects138

3.6.5 Nonlinear transport141

3.7 Transport in quantum waveguide structures145

3.7.1 Mode-matching analysis146

3.7.2 Transport through bends151

3.7.3 Lateral resonant tunneling153

3.7.4 Coupled waveguides155

3.8 Lattice Green's function method156

3.8.1 Single-particle Green's functions159

3.8.2 Tight-binding Hamiltonian161

3.8.3 Lattice Green's functions162

3.8.4 Analytic forms of lattice Green's functions166

3.8.5 Relation between Green's functions and S-matrix173

3.8.6 Recursive Green's function method174

3.8.7 Application to specific geometries178

3.9 Multi-probe formula181

3.9.1 Specific examples185

3.9.2 Experimental multi-probe measurements(B=0)191

3.10 Magnetic fields and quantum waveguides194

3.10.1 Quantized conductance in a perpendicular field195

3.10.2 Edge states and the quantum Hall effect198

3.10.3 Selective population of edge states201

4 Quantum dots and single electron phenomena209

4.1 Electronic states in quantum dot structures209

4.1.1 Noninteracting electrons in a parabolic potential209

4.1.2 Dot states in a magnetic field213

4.1.3 Multi-electron quantum dots215

4.1.4 Quantum dot statistics219

4.1.5 Spectroscopy of quantum dots220

4.2 Single electron tunneling and Coulomb blockade226

4.2.1 Introduction to Coulomb blockade and experimental studies226

4.2.2 Orthodox theory of single electron tunneling249

4.2.3 Co-tunneling of electrons262

4.2.4 Coulomb blockade in semiconductor quantum dots264

4.3 Coupled dots and quantum molecules264

4.4 Transport in anti-dot systems267

4.4.1 The low-magnetic field regime268

4.4.2 The high-magnetic field regime272

5 Interference in diffusive transport280

5.1 Weak localization282

5.1.1 Semiclassical treatment of the conductance283

5.1.2 Effect of a magnetic field286

5.1.3 Size effects in quantum wires291

5.1.4 The magnetic decay"time"294

5.1.5 Extension to short wires297

5.2 Universal conductance fluctuations299

5.3 The Green's function in transport305

5.3.1 Interaction and self-energies308

5.3.2 Impurity scattering309

5.3.3 Beyond the Drude result314

5.4 Weak-localization correction to the conductance317

5.4.1 The cooperon correction319

5.4.2 Role of a magnetic field323

5.4.3 Periodic eigenvalues for the magnetic effects325

5.5 Quantum treatment of the fluctuations328

5.5.1 The correlation function in energy330

5.5.2 Correlation function in a magnetic field334

5.6 Summary of universality336

5.6.1 The width dependence of the fluctuations336

5.6.2 Size variation of the correlation magnetic field338

5.6.3 Breakdown of the universality in a magnetic field340

5.7 Fluctuations in quantum dots346

6 Temperature decay of fluctuations361

6.1 Temperature decay of coherence362

6.1.1 Decay of the coherence length363

6.1.2 Decay of the coherence time368

6.1.3 Summary371

6.2 The role of temperature on the fluctuations372

6.2.1 Fluctuation amplitudes375

6.2.2 Dimensional crossover376

6.2.3 Correlation ranges377

6.3 Electron-electron interaction effects379

6.3.1 Electron energy loss in scattering381

6.3.2 Screening and plasmons382

6.3.3 Temperature Green's functions386

6.3.4 One-particle density of states391

6.3.5 The effective interaction potential392

6.3.6 Electron-electron interactions in disordered systems-Theself-energy403

6.4 Conductivity408

6.5 The phase-breaking time414

6.5.1 Interactions coupled to background fields415

6.5.2 Modifications of the self-energy419

7 Nonequilibrium transport and nanodevices423

7.1 Nonequilibrium transport in mesoscopic devices425

7.1.1 Nonequilibrium effects in tunnel barriers426

7.1.2 Ballistic transport in vertical and planar structures429

7.1.3 Thermopower in nanostructures431

7.1.4 Measuring the hot electron temperature436

7.1.5 Hot carriers in quantum dots437

7.1.6 Breakdown of the Landaner-Büttiker formula442

7.2 Real-time Green's functions445

7.2.1 Equations of motion for the Green's functions447

7.2.2 The Langreth theorem449

7.2.3 The Green-Kubo formula450

7.3 Transport in an inversion layer453

7.3.1 Coulomb scattering454

7.3.2 Surface-roughness scattering455

7.3.3 The retarded function458

7.3.4 The"less-than"function463

7.4 Considerations of mesoscopic devices465

7.4.1 A model device465

7.4.2 Proportional coupling in the leads469

7.4.3 A noninteracting resonant-level model471

7.4.4 Another approach to the phonon-assisted tunneling473

7.5 Nonequilibrium transport in high electric fields476

7.5.1 The retarded function477

7.5.2 The "less-than" function482

7.5.3 Gauge-invariant formulations484

7.6 Screening with the Airy-transformed Green's function487

7.7 Other approaches to quantum transport in nonequilibrium systems490

7.7.1 The density matrix492

7.7.2 The Wigner distribution494

Index507

热门推荐