图书介绍
代数几何讲义 第1卷PDF|Epub|txt|kindle电子书版本网盘下载
![代数几何讲义 第1卷](https://www.shukui.net/cover/3/34589860.jpg)
- (德)G.哈德尔(GünterHarder)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7519209308
- 出版时间:2016
- 标注页数:301页
- 文件大小:43MB
- 文件页数:317页
- 主题词:
PDF下载
下载说明
代数几何讲义 第1卷PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Categories,Products,Projective and Inductive Limits1
1.1 The Notion of a Category and Examples1
1.2 Functors3
1.3 Products,Projective Limits and Direct Limits in a Category4
1.3.1 The Projective Limit4
1.3.2 The Yoneda Lemma6
1.3.3 Examples6
1.3.4 Representable Functors8
1.3.5 Direct Limits9
1.4 Exercises10
2 Basic Concepts of Homological Algebra11
2.1 The Category ModΓ of Γ-modules11
2.2 More Functors13
2.2.1 Invariants,Coinvariants and Exactness13
2.2.2 The First Cohomology Group15
2.2.3 Some Notation16
2.2.4 Exercises17
2.3 The Derived Functors19
2.3.1 The Simple Principle20
2.3.2 Functoriality22
2.3.3 Other Resolutions24
2.3.4 Injective Resolutions of Short Exact Sequences24
A Fundamental Remark26
The Cohomology and the Long Exact Sequence27
The Homology of Groups27
2.4 The Functors Ext and Tor28
2.4.1 The Functor Ext28
2.4.2 The Derived Functor for the Tensor Product30
2.4.3 Exercise32
3 Sheaves35
3.1 Presheaves and Sheaves35
3.1.1 What is a Presheaf?35
3.1.2 A Remark about Products and Presheaf36
3.1.3 What is a Sheaf?36
3.1.4 Examples38
3.2 Manifolds as Locally Ringed Spaces39
3.2.1 What Are Manifolds?39
3.2.2 Examples and Exercise41
3.3 Stalks and Sheafification45
3.3.1 Stalks45
3.3.2 The Process of Sheafification of a Presheaf46
3.4 The Functors f* and f*47
3.4.1 The Adjunction Formula48
3.4.2 Extensions and Restrictions49
3.5 Constructions of Sheaves49
4 Cohomology of Sheaves51
4.1 Examples51
4.1.1 Sheaves on Riemann surfaces51
4.1.2 Cohomology of the Circle54
4.2 The Derived Functor55
4.2.1 Injective Sheaves and Derived Functors55
4.2.2 A Direct Definition of H156
4.3 Fiber Bundles and Non Abelian H159
4.3.1 Fibrations59
Fibre Bundle59
Vector Bundles60
4.3.2 Non-Abelian H161
4.3.3 The Reduction of the Structure Group62
Orientation62
Local Systems63
Isomorphism Classes of Local Systems64
Principal G-bundels64
4.4 Fundamental Properties of the Cohomology of Sheaves65
4.4.1 Introduction65
4.4.2 The Derived Functor to f*66
4.4.3 Functorial Properties of the Cohomology68
4.4.4 Paracompact Spaces69
4.4.5 Applications75
Cohomology of Spheres75
Orientations76
Compact Oriented Surfaces77
4.5 ?ech Cohomology of Sheaves77
4.5.1 The ?ech-Complex77
4.5.2 The ?ech Resolution of a Sheaf81
4.6 Spectral Sequences83
4.6.1 Introduction83
4.6.2 The Vertical Filtration88
4.6.3 The Horizontal Filtration94
Two Special Cases95
Applications of Spectral Sequences96
4.6.4 The Derived Category98
The Composition Rule101
Exact Triangles102
4.6.5 The Spectral Sequence of a Fibration103
Sphere Bundles an Euler Characteristic104
4.6.6 ?ech Complexes and the Spectral Sequence105
A Criterion for Degeneration107
An Application to Product Spaces109
4.6.7 The Cup Product111
4.6.8 Example:Cup Product for the Comology of Tori115
A Connection to the Cohomology of Groups116
4.6.9 An Excursion into Homotopy Theory117
4.7 Cohomology with Compact Supports120
4.7.1 The Definition120
4.7.2 An Example for Cohomology with Compact Supports121
The Cohomology with Compact Supports for Open Balls121
Formulae for Cup Products123
4.7.3 The Fundamental Class125
4.8 Cohomology of Manifolds126
4.8.1 Local Systems126
4.8.2 ?ech Resolutions of Local Systems127
4.8.3 ?ech Coresolution of Local Systems129
4.8.4 Poincaré Duality132
4.8.5 The Cohomology in Top Degree and the Homology138
4.8.6 Some Remarks on Singular Homology140
4.8.7 Cohomology with Compact Support and Embeddings141
4.8.8 The Fundamental Class of a Submanifold143
4.8.9 Cup Product and Intersections144
4.8.10 Compact oriented Surfaces146
4.8.11 The Cohomology Ring of IPn(?)147
4.9 The Lefschetz Fixed Point Formula147
4.9.1 The Euler Characteristic of Manifolds149
4.10 The de Rham and the Dolbeault Isomorphism150
4.10.1 The Cohomology of Flat Bundles on Real Manifolds150
The Product Structure on the de Rham Cohomology153
The de Rham Isomorphism and the fundamental class154
4.10.2 Cohomology of Holomorphic Bundles on Complex Manifolds156
The Tangent Bundle156
The Bundle Ω?158
4.10.3 Chern Classes160
The Line Bundles OIPn(?)(k)163
4.11 Hodge Theory164
4.11.1 Hodge Theory on Real Manifolds164
4.11.2 Hodge Theory on Complex Manifolds169
Some Linear Algebra169
K?hler Manifolds and their Cohomology172
The Cohomology of Holomorphic Vector Bundles175
Serre Duality176
4.11.3 Hodge Theory on Tori177
5 Compact Riemann surfaces and Abelian Varieties179
5.1 Compact Riemann Surfaces179
5.1.1 Introduction179
5.1.2 The Hodge Structure on H1(S,?)180
5.1.3 Cohomology of Holomorphic Bundles185
5.1.4 The Theorem of Riemann-Roch191
On the Picard Group191
Exercises192
The Theorem of Riemann-Roch193
5.1.5 The Algebraic Duality Pairing194
5.1.6 Riemann Surfaces of Low Genus196
5.1.7 The Algebraicity of Riemann Surfaces197
From a Riemann Surface to Function Fields197
The reconstruction of S from K202
Connection to Algebraic Geometry209
Elliptic Curves211
5.1.8 Géométrie Analytique et Géométrie Algébrique-GAGA212
5.1.9 Comparison of Two Pairings215
5.1.10 The Jacobian of a Compact Riemann Surface217
5.1.11 The Classical Version of Abel's Theorem218
5.1.12 Riemann Period Relations222
5.2 Line Bundles on Complex Tori223
5.2.1 Construction of Line Bundles223
The Poincaré Bundle229
Universality of N230
5.2.2 Homomorphisms Between Complex Tori232
The Neron Severi group and Hom(A,A?)234
The construction of ? starting from a line bundle235
5.2.3 The Self Duality of the Jacobian236
5.2.4 Ample Line Bundles and the Algebraicity of the Jacobian237
The Kodaira Embedding Theorem237
The Spaces of Sections239
5.2.5 The Siegel Upper Half Space240
Elliptic curves with level structure243
The end of the excursion251
5.2.6 Riemann-Theta Functions252
5.2.7 Projective embeddings of abelian varieties256
5.2.8 Degeneration of Abelian Varieties259
The Case of Genus 1259
The Algebraic Approach269
5.3 Towards the Algebraic Theory271
5.3.1 Introduction271
The Algebraic Definition of the Neron-Severi Group272
The Algebraic Definition of the Intersection Numbers273
The Study of some Special Neron-Severi groups274
5.3.2 The Structure of End(J)278
The Rosati Involution278
A Trace Formula280
The Fundamental Class[S]of S under the Abel Map284
5.3.3 The Ring of Correspondences285
5.3.4 An Algebraic Substitute for the Cohomology286
Bibliography290
Index293