图书介绍
代数几何讲义 第2卷PDF|Epub|txt|kindle电子书版本网盘下载
- (德)G.哈德尔(GünterHarder)著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7519209315
- 出版时间:2016
- 标注页数:365页
- 文件大小:52MB
- 文件页数:382页
- 主题词:
PDF下载
下载说明
代数几何讲义 第2卷PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
6 Basic Concepts of the Theory of Schemes1
6.1 Affine Schemes1
6.1.1 Localization1
6.1.2 The Spectrum of a Ring2
6.1.3 The Zariski Topology on Spec(A)6
6.1.4 The Structure Sheaf on Spec(A)8
6.1.5 Quasicoherent Sheaves11
6.1.6 Schemes as Locally Ringed Spaces12
Closed Subschemes14
Sections15
A remark15
6.2 Schemes16
6.2.1 The Definition of a Scheme16
The gluing16
Closed subschemes again17
Annihilators,supports and intersections18
6.2.2 Functorial properties18
Affine morphisms19
Sections again19
6.2.3 Construction of Quasi-coherent Sheaves19
Vector bundles20
Vector Bundles Attached to Locally Free Modules20
6.2.4 Vector bundles and GLn-torsors21
6.2.5 Schemes over a base scheme S22
Some notions of finiteness22
Fibered products23
Base change28
6.2.6 Points,T-valued Points and Geometric Points28
Closed Points and Geometric Points on varieties32
6.2.7 Flat Morphisms34
The Concept of Flatness35
Representability of functors38
6.2.8 Theory of descend40
Effectiveness for affine descend data43
6.2.9 Galois descend44
A geometric interpretation47
Descend for general schemes of finite type48
6.2.10 Forms of schemes48
6.2.11 An outlook to more general concepts51
7 Some Commutative Algebra55
7.1 Finite A-Algebras55
7.1.1 Rings With Finiteness Conditions58
7.1.2 Dimension theory for finitely generated k-algebras59
7.2 Minimal prime ideals and decomposition into irreducibles61
Associated prime ideals63
The restriction to the components63
Decomposition into irreducibles for noetherian schemes64
Local dimension65
7.2.1 Affine schemes over k and change of scalars65
What is dim(Z1∩Z2)?70
7.2.2 Local Irreducibility71
The connected component of the identity of an affine group scheme G/k72
7.3 Low Dimensional Rings73
Finite k-Algebras73
One Dimensional Rings and Basic Results from Algebraic Number Theory74
7.4 Flat morphisms80
7.4.1 Finiteness Properties of Tor80
7.4.2 Construction of fiat families82
7.4.3 Dominant morphisms84
Birational morphisms88
The Artin-Rees Theorem89
7.4.4 Formal Schemes and Infinitesimal Schemes90
7.5 Smooth Points91
The Jacobi Criterion95
7.5.1 Generic Smoothness97
The singular locus97
7.5.2 Relative Differentials99
7.5.3 Examples102
7.5.4 Normal schemes and smoothness in codimension one109
Regular local rings110
7.5.5 Vector fields,derivations and infinitesimal automorphisms111
Automorphisms114
7.5.6 Group schemes114
7.5.7 The groups schemes Ga,Gm and μn116
7.5.8 Actions of group schemes117
8 Projective Schemes121
8.1 Geometric Constructions121
8.1.1 The Projective Space IP?121
Homogenous coordinates123
8.1.2 Closed subschemes125
8.1.3 Projective Morphisms and Projective Schemes126
Locally Free Sheaves on IPn129
OIPn(d)as Sheaf of Meromorphic Functions131
The Relative Differentials and the Tangent Bundle of IP?132
8.1.4 Seperated and Proper Morphisms134
8.1.5 The Valuative Criteria136
The Valuative Criterion for the Projective Space136
8.1.6 The Construction Proj(R)137
A special case of a finiteness result139
8.1.7 Ample and Very Ample Sheaves140
8.2 Cohomology of Quasicoherent Sheaves146
8.2.1 ?ech cohomology148
8.2.2 The Künneth-formulae150
8.2.3 The cohomology of the sheaves OIPn (r)151
8.3 Cohomology of Coherent Sheaves153
The Hilbert polynomial157
8.3.1 The coherence theorem for proper morphisms158
Digression:Blowing up and contracting159
8.4 Base Change164
8.4.1 Flat families and intersection numbers171
The Theorem of Bertini179
8.4.2 The hyperplane section and intersection numbers of line bundles180
9 Curves and the Theorem of Riemann-Roch183
9.1 Some basic notions183
9.2 The local rings at closed points185
9.2.1 The structure of ?C,p186
9.2.2 Base change186
9.3 Curves and their function fields188
9.3.1 Ramification and the different ideal190
9.4 Line bundles and Divisors193
9.4.1 Divisors on curves195
9.4.2 Properties of the degree197
Line bundles on non smooth curves have a degree197
Base change for divisors and line bundles198
9.4.3 Vector bundles over a curve198
Vector bundles on IP1199
9.5 The Theorem of Riemann-Roch201
9.5.1 Differentials and Residues203
9.5.2 The special case C=IP1/k207
9.5.3 Back to the general case211
9.5.4 Riemann-Roch for vector bundles and for coherent sheaves218
The structure of K′(C)220
9.6 Applications of the Riemann-Roch Theorem221
9.6.1 Curves of low genus221
9.6.2 The moduli space223
9.6.3 Curves of higher genus234
The“moduli space”of curves of genus g238
9.7 The Grothendieck-Riemann-Roch Theorem239
9.7.1 A special case of the Grothendieck-Riemann-Roch theorem240
9.7.2 Some geometric considerations241
9.7.3 The Chow ring244
Base extension of the Chow ring247
9.7.4 The formulation of the Grothendieck-Riemann-Roch Theorem249
9.7.5 Some special cases of the Grothendieck-Riemann-Roch-Theorem252
9.7.6 Back to the case p2:X=C×C→C253
9.7.7 Curves over finite fields257
Elementary properties of the ζ-function258
The Riemann hypothesis261
10 The Picard functor for curves and their Jacobians265
Introduction:265
10.1 The construction of the Jacobian265
10.1.1 Generalities and heuristics:265
Rigidification of PIC267
10.1.2 General properties of the functor PIC269
The locus of triviality269
10.1.3 Infinitesimal properties272
Differentiating a line bundle along a vector field274
The theorem of the cube274
10.1.4 The basic principles of the construction of the Picard scheme of a curve278
10.1.5 Symmetric powers279
10.1.6 The actual construction of the Picard scheme of a curve284
The gluing291
10.1.7 The local representability of PIC?/k294
10.2 The Picard functor on X and on J297
Some heuristic remarks297
10.2.1 Construction of line bundles on X and on J297
The homomorphisms ?M298
10.2.2 The projectivity of X and J301
The morphisms ?M are homomorphisms of functors302
10.2.3 Maps from the curve C to X,local representability of PIC X/k,PIC J/k and the self duality of the Jacobian303
10.2.4 The self duality of the Jacobian310
10.2.5 General abelian varieties311
10.3 The ring of endomorphisms End(J)and the e-adic modules Te(J)314
Some heuristics and outlooks314
The study of End(J)315
The degree and the trace318
The Weil Pairing326
The Neron-Severi groups NS(J),NS(J×J)and End(J)328
The ring of correspondences331
10.4 ?tale Cohomology334
The cyclotomic character334
10.4.1 ?tale cohomology groups335
Galois cohomology336
The geometric étale cohomology groups338
10.4.2 Schemes over finite fields344
The global case346
The degenerating family of elliptic curves350
Bibliography357
Index362