图书介绍

磁性材料 第2版 英文PDF|Epub|txt|kindle电子书版本网盘下载

磁性材料 第2版 英文
  • (美)斯波尔丁(Nicola.A.Spaldin)著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510087714
  • 出版时间:2015
  • 标注页数:274页
  • 文件大小:47MB
  • 文件页数:288页
  • 主题词:磁性材料-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

磁性材料 第2版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ Basics3

1 Review of basic magnetostatics3

1.1 Magnetic field4

1.1.1 Magnetic poles4

1.1.2 Magnetic flux6

1.1.3 Circulating currents6

1.1.4 Ampère's circuital law7

1.1.5 Biot-Savart law8

1.1.6 Field from a straight wire8

1.2 Magnetic moment10

1.2.1 Magnetic dipole11

1.3 Definitions11

Homework12

2 Magnetization and magnetic materials14

2.1 Magnetic induction and magnetization14

2.2 Flux density15

2.3 Susceptibility and permeability16

2.4 Hysteresis loops18

2.5 Definitions19

2.6 Units and conversions19

Homework20

3 Atomic origins of magnetism22

3.1 Solution of the Schr?dinger equation for a free atom22

3.1.1 What do the quantum numbers represent?25

3.2 The normal Zeeman effect27

3.3 Electron spin30

3.4 Extension to many-electron atoms31

3.4.1 Pauli exclusion principle32

3.5 Spin-orbit coupling32

3.5.1 Russell-Saunders coupling32

3.5.2 Hund's rules34

3.5.3 jj coupling35

3.5.4 The anomalous Zeeman effect35

Homework37

Diamagnetism38

4.1 Observing the diamagnetic effect38

4.2 Diamagnetic susceptibility39

4.3 Diamagnetic substances41

4.4 Uses of diamagnetic materials42

4.5 Superconductivity42

4.5.1 The Meissner effect43

4.5.2 Critical field44

4.5.3 Classification of superconductors44

4.5.4 Superconducting materials44

4.5.5 Applications for superconductors46

Homework46

5 Paramagnetism48

5.1 Langevin theory of paramagnetism49

5.2 The Curie-Weiss law52

5.3 Quenching of orbital angular momentum54

5.4 Pauli paramagnetism55

5.4.1 Energy bands in solids56

5.4.2 Free-electron theory of metals58

5.4.3 Susceptibility of Pauli paramagnets60

5.5 Paramagnetic oxygen62

5.6 Uses of paramagnets63

Homework64

6 Interactions in ferromagnetic materials65

6.1 Weiss molecular field theory66

6.1.1 Spontaneous magnetization66

6.1.2 Effect of temperature on magnetization67

6.2 Origin of the Weiss molecular field69

6.2.1 Quantum mechanics of the He atom70

6.3 Collective-electron theory of ferromagnetism73

6.3.1 The Slater-Pauling curve76

6.4 Summary76

Homework78

7 Ferromagnetic domains79

7.1 Observing domains79

7.2 Why domains occur81

7.2.1 Magnetostatic energy81

7.2.2 Magnetocrystalline energy82

7.2.3 Magnetostrictive energy84

7.3 Domain walls85

7.4 Magnetization and hysteresis87

Homework92

8 Antiferromagnetism96

8.1 Neutron diffraction97

8.2 Weiss theory of antiferromagnetism101

8.2.1 Susceptibility above TN102

8.2.2 Weiss theory at TN103

8.2.3 Spontaneous magnetization below TN103

8.2.4 Susceptibility below TN103

8.3 What causes the negative molecular field?107

8.4 Uses of antiferromagnets110

Homework112

9 Ferrimagnetism113

9.1 Weiss theory of ferrimagnetism114

9.1.1 Weiss theory above TC115

9.1.2 Weiss theory below TC117

9.2 Ferrites120

9.2.1 The cubic ferrites120

9.2.2 The hexagonal ferrites124

9.3 The garnets125

9.4 Half-metallic antiferromagnets126

Homework127

10 Summary of basics130

10.1 Review of types of magnetic ordering130

10.2 Review of physics determining types of magnetic ordering131

Ⅱ Magnetic phenomena135

11 Anisotropy135

11.1 Magnetocrystalline anisotropy135

11.1.1 Origin of magnetocrystalline anisotropy136

11.1.2 Symmetry of magnetocrystalline anisotropy138

11.2 Shape anisotropy139

11.2.1 Demagnetizing field139

11.3 Induced magnetic anisotropy141

11.3.1 Magnetic annealing141

11.3.2 Roll anisotropy142

11.3.3 Explanation for induced magnetic anisotropy142

11.3.4 Other ways of inducing magnetic anisotropy143

Homework144

12 Nanoparticles and thin films145

12.1 Magnetic properties of small particles145

12.1.1 Experimental evidence for single-domain147

particles147

12.1.2 Magnetization mechanism147

12.1.3 Superparamagnetism148

12.2 Thin-film magnetism152

12.2.1 Structure152

12.2.2 Interfaces153

12.2.3 Anisotropy153

12.2.4 How thin is thin?154

12.2.5 The limit of two-dimensionality154

13 Magnetoresistance156

13.1 Magnetoresistance in normal metals157

13.2 Magnetoresistance in ferromagnetic metals158

13.2.1 Anisotropic magnetoresistance158

13.2.2 Magnetoresistance from spontaneous magnetization159

13.2.3 Giant magnetoresistance160

13.3 Colossal magnetoresistance164

13.3.1 Superexchange and double exchange164

Homework168

14 Exchange bias169

14.1 Problems with the simple cartoon mechanism171

14.1.1 Ongoing research on exchange bias172

14.2 Exchange anisotropy in technology173

Ⅲ Device applications and novel materials177

15 Magnetic data storage177

15.1 Introduction177

15.2 Magnetic media181

15.2.1 Materials used in magnetic media181

15.2.2 The other components of magnetic hard disks183

15.3 Write heads183

15.4 Read heads185

15.5 Future of magnetic data storage186

16 Magneto-optics and magneto-optic recording189

16.1 Magneto-optics basics189

16.1.1 Kerr effect189

16.1.2 Faraday effect191

16.1.3 Physical origin of magneto-optic effects191

16.2 Magneto-optic recording193

16.2.1 Other types of optical storage, and the future of magneto-optic recording196

17 Magnetic semiconductors and insulators197

17.1 Exchange interactions in magnetic semiconductors and insulators198

17.1.1 Direct exchange and superexchange199

17.1.2 Carrier-mediated exchange199

17.1.3 Bound magnetic polarons200

17.2 Ⅱ-Ⅵ diluted magnetic semiconductors-(Zn,Mn)Se201

17.2.1 Enhanced Zeeman splitting201

17.2.2 Persistent spin coherence202

17.2.3 Spin-polarized transport203

17.2.4 Other architectures204

17.3 Ⅲ-Ⅴ diluted magnetic semiconductors-(Ga,Mn)As204

17.3.1 Rare-earth-group-V compounds-ErAs207

17.4 Oxide-based diluted magnetic semiconductors208

17.5 Ferromagnetic insulators210

17.5.1 Crystal-field and Jahn-Teller effects210

17.5.2 YTiO3 and SeCuO3211

17.5.3 BiMnO3213

17.5.4 Europium oxide214

17.5.5 Double perovskites215

17.6 Summary215

18 Multiferroics216

18.1 Comparison of ferromagnetism and other types of ferroic ordering216

18.1.1 Ferroelectrics216

18.1.2 Ferroelastics219

18.1.3 Ferrotoroidics220

18.2 Multiferroics that combine magnetism and ferroelectricity221

18.2.1 The contra-indication between magnetism and ferroelectricity222

18.2.2 Routes to combining magnetism and ferroelectricity223

18.2.3 The magnetoelectric effect225

18.3 Summary228

Epilogue229

Solutions to selected exercises230

References262

Index270

热门推荐