图书介绍

传热学的有限元方法PDF|Epub|txt|kindle电子书版本网盘下载

传热学的有限元方法
  • 翁荣周编著 著
  • 出版社: 广州:暨南大学出版社
  • ISBN:7810297767
  • 出版时间:2000
  • 标注页数:148页
  • 文件大小:3MB
  • 文件页数:159页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

传热学的有限元方法PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 张量及张量语言3

1 标量、矢量及张量的概念3

2 张量语言4

2.1 指标记号4

2.2 指标符号6

3 矢量及其张量语言表示法7

3.1 Hamilton算子?7

3.2 矢量的点乘积7

3.3 矢量的叉乘积8

4 梯度、散度和旋度及其张量语言表示法8

4.1 梯度8

4.2 散度10

4.3 旋度13

5 几个积分定理14

5.1 Gauss散度定理14

5.2 Green第一定理15

5.3 Green第二定理15

5.4 推论16

6 张量17

6.1 坐标变换17

6.2 张量的定义18

6.3 张量例19

6.4 张量运算要点22

7 曲线坐标23

7.1 曲线坐标的一般概念23

7.2 坐标基矢量及拉梅系数25

7.3 正交曲线坐标的弧微分25

7.4 正交曲线坐标系中梯度、散度、旋度和调和量的表示式27

习题31

第二章 变分法及Galerkin法33

1 基本定义33

2 泛函变分与泛函极值37

2.1 泛函37

2.2 函数的变分38

2.3 泛函的变分39

2.4 泛函变分计算例41

2.5 泛函极值的必要条件42

3 变分原理43

3.1 Mikhlin定理43

3.2 自然边界条件与本质边界条件44

4 变分极值求解的里兹法45

5 Galerkin法48

5.1 Galerkin加权余量法48

5.2 例49

5.3 Galerkin积分表达式的另一种形式50

5.4 Galerkin加权余量法与变分法的关系50

6 强解与弱解积分表达式51

习题54

第三章 有限元55

1 概述55

2 近似函数与插值函数56

3 一维有限元例59

3.1 有限元出发方程的建立59

3.2 区域剖分60

3.3 插值函数的确定61

3.4 单元分析62

3.5 总体合成64

3.6 边界条件的处理65

3.7 有限元方程的求解68

习题68

第四章 插值函数70

1 一维Lagrange插值70

2 二维三角形单元Lagrange插值72

3 二维矩形单元Lagrange插值77

4 等参数单元79

5 三维单元Lagrange插值82

6 Hermite插值84

习题86

第五章 传热的基本方程组87

1 流体运动的描述87

1.1 空间描述87

1.2 物质描述88

1.3 空间描述与物质描述的关系89

2 随体导数90

2.1 空间描述的情形90

2.2 物质描述的情形91

3 流场分析92

4 应力及应力张量94

5 本构方程96

6 连续性方程98

7 运动方程99

7.1 以应力表示的运动方程99

7.2 以速度表示的运动方程100

8 能量方程101

8.1 以内能形式表示的能量方程101

8.2 以温度形式表示的能量方程103

9 传热方程组的定解问题103

9.1 定解前提103

9.2 定解条件104

10 正交曲线坐标系传热的基本方程组105

习题107

第六章 热传导109

1 二维稳定热传导问题109

2 边界条件的处理114

2.1 第一类边界条件的处理114

2.2 第二类边界条件的处理114

2.3 绝热壁边界条件115

3 三维热传导问题115

4 三维不稳定导热问题117

5 轴对称等参数有限元分析119

6 Gauss数值积分计算124

7 有限元计算程序的编制126

习题133

第七章 对流换热135

1 不可压缩粘性流体流动的基本方程135

2 边界条件的确定136

3 不可压缩粘性流体流动的有限元分析139

4 对流—扩散方程的有限元分析141

5 对流—扩散问题的迎风有限元144

习题147

参考资料148

热门推荐