图书介绍
电力系统稳定与控制 影印版PDF|Epub|txt|kindle电子书版本网盘下载
- (加)Prabha Kundur著 著
- 出版社: 北京:中国电力出版社
- ISBN:7508308174
- 出版时间:2001
- 标注页数:1176页
- 文件大小:35MB
- 文件页数:1201页
- 主题词:电力系统稳定(学科: 稳定控制) 电力系统稳定 稳定控制
PDF下载
下载说明
电力系统稳定与控制 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART Ⅰ GENERAL BACKGROUND3
1 GENERAL CHARACTERISTICS OF MODERN POWER SYSTEMS3
1.1 Evolution of electric power systems3
1.2 Structure of the power system5
1.3 Power system control8
1.4 Design and operating criteria for stability13
References16
2 INTRODUCTION TO THE POWER SYSTEM STABILITY PROBLEM17
2.1 Basic concepts and definitions17
2.1.1 Rotor angle stability18
2.1.2 Voltage stability and voltage collapse27
2.1.3 Mid-term and long-term stability33
2.2 Classification of stability34
2.3 Historical review of stability problems37
References40
PART Ⅲ EQUIPMENT CHARACTERISTICS AND MODELLING45
3 SYNCHRONOUS MACHINE THEORY AND MODELLING45
3.1 Physical description46
3.1.1 Armature and field structure46
3.1.2 Machines with multiple pole pairs49
3.1.3 MMF waveforms49
3.1.4 Direct and quadrature axes53
3.2 Mathematical description of a synchronous machine54
3.2.1 Review of magnetic circuit equations56
3.2.2 Basic equations of a synchronous machine59
3.3 The dq0 transformation67
3.4 Per unit representation75
3.4.1 Per unit system for the stator quantities75
3.4.2 Per unit stator voltage equations76
3.4.3 Per unit rotor voltage equations77
3.4.4 Stator flux linkage equations78
3.4.5 Rotor flux linkage equations78
3.4.6 Per unit system for the rotor79
3.4.7 Per unit power and torque83
3.4.8 Alternative per unit systems and transformations83
3.4.9 Summary of per unit equations84
3.5 Equivalent circuits for direct and quadrature axes88
3.6 Steady-state analysis93
3.6.1 Voltage,current,and flux linkage relationships93
3.6.2 Phasor representation95
3.6.3 Rotor angle98
3.6.4 Steady-state equivalent circuit99
3.6.5 Procedure for computing steady-state values100
3.7 Electrical transient performance characteristics105
3.7.1 Short-circuit current in a simple RL circuit105
3.7.2 Three-phase short-circuit at the terminals of a synchronous machine107
3.7.3 Elimination of dc offset in short-circuit current108
3.8 Magnetic saturation110
3.8.1 Open-circuit and short-circuit characteristics110
3.8.2 Representation of saturation in stability studies112
3.8.3 Improved modelling of saturation117
3.9 Equations of motion128
3.9.1 Review of mechanics of motion128
3.9.2 Swing equation128
3.9.3 Mechanical starting time132
3.9.4 Calculation of inertia constant132
3.9.5 Representation in system studies135
References136
4 SYNCHRONOUS MACHINE PARAMETERS139
4.1 Operational parameters139
4.2 Standard parameters144
4.3 Frequency-response characteristics159
4.4 Determination of synchronous machine parameters161
References166
5 SYNCHRONOUS MACHINE REPRESENTATION IN STABILITY STUDIES169
5.1 Simplifications essential for large-scale studies169
5.1.1 Neglect of stator pψ terms170
5.1.2 Neglecting the effect of speed variations on stator voltages174
5.2 Simplified model with amortisseurs neglected179
5.3 Constant flux linkage model184
5.3.1 Classical model184
5.3.2 Constant flux linkage model including the effects of subtransient circuits188
5.3.3 Summary of simple models for different time frames190
5.4 Reactive capability limits191
5.4.1 Reactive capability curves191
5.4.2 V curves and compounding curves196
References198
6 AC TRANSMISSION199
6.1 Transmission lines200
6.1.1 Electrical characteristics200
6.1.2 Performance equations201
6.1.3 Natural or surge impedance loading205
6.1.4 Equivalent circuit of a transmission line206
6.1.5 Typical parameters209
6.1.6 Performance requirements of power transmission lines211
6.1.7 Voltage and current profile under no-load211
6.1.8 Voltage-power characteristics216
6.1.9 Power transfer and stability considerations221
6.1.10 Effect of line loss on V-P and Q-P characteristics225
6.1.11 Thermal limits226
6.1.12 Loadability characteristics228
6.2 Transformers231
6.2.1 Representation of two-winding transformers232
6.2.2 Representation of three-winding transformers240
6.2.3 Phase-shifting transformers245
6.3 Transfer of power between active sources250
6.4 Power-flow analysis255
6.4.1 Network equations257
6.4.2 Gauss-Seidel method259
6.4.3 Newton-Raphson(N-R)method260
6.4.4 Fast decoupled load-flow(FDLF)methods264
6.4.5 Comparison of the power-flow solution methods267
6.4.6 Sparsity-oriented triangular factorization268
6.4.7 Network reduction268
References269
7 POWER SYSTEM LOADS271
7.1 Basic load-modelling concepts271
7.1.1 Static load models272
7.1.2 Dynamic load models274
7.2 Modelling of induction motors279
7.2.1 Equations of an induction machine279
7.2.2 Steady-state characteristics287
7.2.3 Alternative rotor constructions293
7.2.4 Representation of saturation296
7.2.5 Per unit representation297
7.2.6 Representation in stability studies300
7.3 Synchronous motor model306
7.4 Acquisition of load-model parameters306
7.4.1 Measurement-based approach306
7.4.2 Component-based approach308
7.4.3 Sample load characteristics310
References312
8 EXCITATION SYSTEMS315
8.1 Excitation system requirements315
8.2 Elements of an excitation system317
8.3 Types of excitation systems318
8.3.1 DC excitation systems319
8.3.2 AC excitation systems320
8.3.3 Static excitation systems323
8.3.4 Recent developments and future trends326
8.4 Dynamic performance measures327
8.4.1 Le??ge-signal Performance measures327
8.4.2 Small-signal performance measures330
8.5 Control and protective functions333
8.5.1 AC and DC regulators333
8.5.2 Excitation system stabilizing circuits334
8.5.3 Power system stabilizer(PSS)335
8.5.4 Load compensation335
8.5.5 Underexcitation limiter337
8.5.6 Overexcitation limiter337
8.5.7 Volts-per hertz limiter and protection339
8.5.8 Field-shorting circuits340
8.6 Modelling of excitation systems341
8.6.1 Per unit system342
8.6.2 Modelling of excitation system components347
8.6.3 Modelling of complete excitation systems362
8.6.4 Field testing for model development and verification372
References373
9 PRIME MOVERS AND ENERGY SUPPLY SYSTEMS377
9.1 Hydraulic turbines and governing systems377
9.1.1 Hydraulic turbine transfer function379
9.1.2 Nonlinear turbine model assuming inelastic water column387
9.1.3 Governors for hydraulic turbines394
9.1.4 Detailed hydraulic system model404
9.1.5 Guidelines for modelling hydraulic turbines417
9.2 Steam turbines and governing systems418
9.2.1 Modelling of steam turbines422
9.2.2 Steam turbine controls432
9.2.3 Steam turbine off-frequency capability444
9.3 Thermal energy systems449
9.3.1 Fossil-fuelled energy systems449
9.3.2 Nuclear-based energy systems455
9.3.3 Modelling of thermal energy systems459
References460
10 HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION463
10.1 HVDC system configurations and components464
10.1.1 Classification of HVDC links464
10.1.2 Components of HVDC transmission system467
10.2 Converter theory and performance equations468
10.2.1 Valve characteristics469
10.2.2 Converter circuits470
10.2.3 Converter transformer rating492
10.2.4 Multiple-bridge converters493
10.3 Abnormal operation498
10.3.1 Arc-back(backfire)498
10.3.2 Commutation failure499
10.4 Control of HVDC systems500
10.4.1 Basic principles of control500
10.4.2 Control implementation514
10.4.3 Converter firing-control systems516
10.4.4 Valve blocking and bypassing520
10.4.5 Starting, stopping, and power-flow reversal521
10.4.6 Controls for enhancement of ac system performance523
10.5 Harmonics and filters524
10.5.1 AC side harmonics524
10.5.2 DC side hermonics527
10.6 Influence of ac system strength on ac/dc system interaction528
10.6.1 Short-circuit ratio528
10.6.2 Reactive power and ac system strength529
10.6.3 Problems with low ESCR systems530
10.6.4 Solutions to problems associated with weak systems531
10.6.5 Effective inertia constant532
10.6.6 Forced commutation532
10.7 Responses to dc and ac system faults533
10.7.1 DC line faults534
10.7.2 Converter faults535
10.7.3 AC system faults535
10.8 Multiterminal HVDC systems538
10.8.1 MIDC network configurations539
10.8.2 Control of MTDC systems540
10.9 Modelling of HVDC systems544
10.9.1 Representation for power-flow solution544
10.9.2 Per unit system for dc quantities564
10.9.3 Representation for stability studies566
References577
11 CONTROL OF ACTIVE POWER AND REACTIVE POWER581
11.1 Active power and frequency control581
11.1.1 Fundamentals of speed governing582
11.1.2 Control of generating unit power output592
11.1.3 Composite regulating characteristic of power systems595
11.1.4 Response rates of turbine-governing systems598
11.1.5 Fundamentals of automatic generation control601
11.1.6 Implementation of AGC617
11.1.7 Underfrequency load shedding623
11.2 Reactive power and voltage control627
11.2.1 Production and absorption of reactive power627
11.2.2 Methods of voltage control628
11.2.3 Shunt reactors629
11.2.4 Shunt capacitors631
11.2.5 Series capacitors633
11.2.6 Synchronous condensers638
11.2.7 Static var systems639
11.2.8 Principles of transmission system compensation654
11.2.9 Modelling of reactive compensating devices672
11.2.10 Application of tap-changing transformers to transmission systems678
11.2.11 Distribution system voltage regulation679
11.2.12 Modelling of transformer ULTC control systems684
11.3 Power-flow analysis procedures687
11.3.1 Prefault power flows687
11.3.2 Postfault power flows688
References691
PART Ⅲ SYSTEM STABILITY:physical aspects,analysis,and improvement699
12 SMALL-SIGNAL STABILITY699
12.1 Fundamental concepts of stability of dynamic systems700
12.1.1 State-space representation700
12.1.2 Stability of a dynamic system702
12.1.3 Linearization703
12.1.4 Analysis of stability706
12.2 Eigenproperties of the state matrix707
12.2.1 Eigenvalues707
12.2.2 Eigenvectors707
12.2.3 Modal matrices708
12.2.4 Free motion of a dynamic system709
12.2.5 Mode shape,sensitivity,and participation factor714
12.2.6 Controllability and observability716
12.2.7 The concept of complex frequency717
12.2.8 Relationship between eigenproperties and transfer functions719
12.2.9 Computation of eigenvalues726
12.3 Small-signal stability of a single-machine infinite bus system727
12.3.1 Generator represented by the classical model728
12.3.2 Effects of synchronous machine field circuit dynamics737
12.4 Effects of excitation system758
12.5 Power system stabilizer766
12.6 System state matrix with amortisseurs782
12.7 Small-signal stability of multimachine systems792
12.8 Special techniques for analysis of very large systems799
12.9 Characteristics of small-signal stability problems817
References822
13 TRANSIENT STABILITY827
13.1 An elementary view of transient stability827
13.2 Numerical integration methods836
13.2.1 Euler method836
13.2.2 Modified Euler method838
13.2.3 Runge-Kutta(R-K)methods838
13.2.4 Numerical stability of explicit integration methods841
13.2.5 Implicit integration methods842
13.3 Simulation of power system dynamic response848
13.3.1 Structure of the power system model848
13.3.2 Synchronous machine representation849
13.3.3 Excitation system representation855
13.3.4 Transmission network and load representation858
13.3.5 Overall system equations859
13.3.6 Solution of overall system equations861
13.4 Analysis of unbalanced faults872
13.4.1 Introduction to symmetrical components872
13.4.2 Sequence impedances of synchronous machines877
13.4.3 Sequence impedances of transmission lines884
13.4.4 Sequence impedances of transformers884
13.4.5 Simulation of different types of faults885
13.4.6 Representation of open-conductor conditions898
13.5 Performance of protective relaying903
13.5.1 Transmission line protection903
13.5.2 Fault-clearing times911
13.5.3 Relaying quantities during swings914
13.5.4 Evaluation of distance relay performance during swings919
13.5.5 Prevention of tripping during transient conditions920
13.5.6 Automatic line reclosing922
13.5.7 Generator out-of-step protection923
13.5.8 Loss-of-excitation protection927
13.6 Case study of transient stability of a large system934
13.7 Direct method of transient stability analysis941
13.7.1 Description of the transient energy function approach941
13.7.2 Analysis of practical power systems945
13.7.3 Limitations of the direct methods954
References954
14 VOLTAGE STABILITY959
14.1 Basic concepts related to voltage stability960
14.1.1 Transmission system characteristics960
14.1.2 Generator characteristics967
14.1.3 Load characteristics968
14.1.4 Characteristics of reactive compensating devices969
14.2 Voltage collapse973
14.2.1 Typical scenario of voltage collapse974
14.2.2 General characterization based on actual incidents975
14.2.3 Classification of voltage stability976
14.3 Voltage stability analysis977
14.3.1 Modelling requirements978
14.3.2 Dynamic analysis978
14.3.3 Static analysis990
14.3.4 Determination of shortest distance to instability1007
14.3.5 The continuation power-flow analysis1012
14.4 Prevention of voltage collapse1019
14.4.1 System design measures1019
14.4.2 System-operating measures1021
References1022
15 SUBSYNCHRONOUS OSCILLATIONS1025
15.1 Turbine-generator torsional characteristics1026
15.1.1 Shaft system model1026
15.1.2 Torsional natural frequencies and mode shapes1034
15.2 Torsional interaction with power system controls1041
15.2.1 Interaction with generator excitation controls1041
15.2.2 Interaction with speed governors1047
15.2.3 Interaction with nearby dc converters1047
15.3 Subsynchronous resonance1050
15.3.1 Characteristics of series capacitor-compensated transmission systems1050
15.3.2 Self-excitation due to induction generator effect1052
15.3.3 Torsional interaction resulting in SSR1053
15.3.4 Analytical methods1053
15.3.5 Countermeasures to SSR problems1060
15.4 Impact of network-switching disturbances1061
15.5 Torsional interaction between closely coupled units1065
15.6 Hydro generator torsional characteristics1067
References1068
16 MID-TERM AND LONG-TERM STABILITY1073
16.1 Nature of system response to severs upsets1073
16.2 Distinction between mid-term and long-term stability1078
16.3 Power plant response during severe upsets1079
16.3.1 Thermal power plants1079
16.3.2 Hydro power plants1081
16.4 Simulation of long-term dynamic response1085
16.4.1 Purpose of long-term dynamic simulations1085
16.4.2 Modelling requirements1085
16.4.3 Numerical integration techniques1087
16.5 Case studies of severe system upsets1088
16.5.1 Case study involving an overgenerated island1088
16.5.2 Case study involving an undergenerated island1092
References1099
17 METHODS OF IMPROVING STABILITY1103
17.1 Transient stability enhancement1104
17.1.1 High-speed fault clearing1104
17.1.2 Reduction of transmission system reactance1104
17.1.3 Regulated shunt compensation1105
17.1.4 Dynamic braking1106
17.1.5 Reactor switching1106
17.1.6 Independent-pole operation of circuit breakers1107
17.1.7 Single-pole switching1107
17.1.8 Steam turbine fast-valving1110
17.1.9 Generator tripping1118
17.1.10 Controlled system separation and load shedding1120
17.1.11 High-speed excitation systems1121
17.1.12 Discontinuous excitation control1124
17.1.13 Control of HVDC transmission links1125
17.2 Small-signal stability enhancement1127
17.2.1 Power system stabilizers1128
17.2.2 Supplementary control of static var compensators1142
17.2.3 Supplementary control of HVDC transmission links1151
References1161
INDEX1167