图书介绍

电力系统稳定与控制 影印版PDF|Epub|txt|kindle电子书版本网盘下载

电力系统稳定与控制 影印版
  • (加)Prabha Kundur著 著
  • 出版社: 北京:中国电力出版社
  • ISBN:7508308174
  • 出版时间:2001
  • 标注页数:1176页
  • 文件大小:35MB
  • 文件页数:1201页
  • 主题词:电力系统稳定(学科: 稳定控制) 电力系统稳定 稳定控制

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

电力系统稳定与控制 影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART Ⅰ GENERAL BACKGROUND3

1 GENERAL CHARACTERISTICS OF MODERN POWER SYSTEMS3

1.1 Evolution of electric power systems3

1.2 Structure of the power system5

1.3 Power system control8

1.4 Design and operating criteria for stability13

References16

2 INTRODUCTION TO THE POWER SYSTEM STABILITY PROBLEM17

2.1 Basic concepts and definitions17

2.1.1 Rotor angle stability18

2.1.2 Voltage stability and voltage collapse27

2.1.3 Mid-term and long-term stability33

2.2 Classification of stability34

2.3 Historical review of stability problems37

References40

PART Ⅲ EQUIPMENT CHARACTERISTICS AND MODELLING45

3 SYNCHRONOUS MACHINE THEORY AND MODELLING45

3.1 Physical description46

3.1.1 Armature and field structure46

3.1.2 Machines with multiple pole pairs49

3.1.3 MMF waveforms49

3.1.4 Direct and quadrature axes53

3.2 Mathematical description of a synchronous machine54

3.2.1 Review of magnetic circuit equations56

3.2.2 Basic equations of a synchronous machine59

3.3 The dq0 transformation67

3.4 Per unit representation75

3.4.1 Per unit system for the stator quantities75

3.4.2 Per unit stator voltage equations76

3.4.3 Per unit rotor voltage equations77

3.4.4 Stator flux linkage equations78

3.4.5 Rotor flux linkage equations78

3.4.6 Per unit system for the rotor79

3.4.7 Per unit power and torque83

3.4.8 Alternative per unit systems and transformations83

3.4.9 Summary of per unit equations84

3.5 Equivalent circuits for direct and quadrature axes88

3.6 Steady-state analysis93

3.6.1 Voltage,current,and flux linkage relationships93

3.6.2 Phasor representation95

3.6.3 Rotor angle98

3.6.4 Steady-state equivalent circuit99

3.6.5 Procedure for computing steady-state values100

3.7 Electrical transient performance characteristics105

3.7.1 Short-circuit current in a simple RL circuit105

3.7.2 Three-phase short-circuit at the terminals of a synchronous machine107

3.7.3 Elimination of dc offset in short-circuit current108

3.8 Magnetic saturation110

3.8.1 Open-circuit and short-circuit characteristics110

3.8.2 Representation of saturation in stability studies112

3.8.3 Improved modelling of saturation117

3.9 Equations of motion128

3.9.1 Review of mechanics of motion128

3.9.2 Swing equation128

3.9.3 Mechanical starting time132

3.9.4 Calculation of inertia constant132

3.9.5 Representation in system studies135

References136

4 SYNCHRONOUS MACHINE PARAMETERS139

4.1 Operational parameters139

4.2 Standard parameters144

4.3 Frequency-response characteristics159

4.4 Determination of synchronous machine parameters161

References166

5 SYNCHRONOUS MACHINE REPRESENTATION IN STABILITY STUDIES169

5.1 Simplifications essential for large-scale studies169

5.1.1 Neglect of stator pψ terms170

5.1.2 Neglecting the effect of speed variations on stator voltages174

5.2 Simplified model with amortisseurs neglected179

5.3 Constant flux linkage model184

5.3.1 Classical model184

5.3.2 Constant flux linkage model including the effects of subtransient circuits188

5.3.3 Summary of simple models for different time frames190

5.4 Reactive capability limits191

5.4.1 Reactive capability curves191

5.4.2 V curves and compounding curves196

References198

6 AC TRANSMISSION199

6.1 Transmission lines200

6.1.1 Electrical characteristics200

6.1.2 Performance equations201

6.1.3 Natural or surge impedance loading205

6.1.4 Equivalent circuit of a transmission line206

6.1.5 Typical parameters209

6.1.6 Performance requirements of power transmission lines211

6.1.7 Voltage and current profile under no-load211

6.1.8 Voltage-power characteristics216

6.1.9 Power transfer and stability considerations221

6.1.10 Effect of line loss on V-P and Q-P characteristics225

6.1.11 Thermal limits226

6.1.12 Loadability characteristics228

6.2 Transformers231

6.2.1 Representation of two-winding transformers232

6.2.2 Representation of three-winding transformers240

6.2.3 Phase-shifting transformers245

6.3 Transfer of power between active sources250

6.4 Power-flow analysis255

6.4.1 Network equations257

6.4.2 Gauss-Seidel method259

6.4.3 Newton-Raphson(N-R)method260

6.4.4 Fast decoupled load-flow(FDLF)methods264

6.4.5 Comparison of the power-flow solution methods267

6.4.6 Sparsity-oriented triangular factorization268

6.4.7 Network reduction268

References269

7 POWER SYSTEM LOADS271

7.1 Basic load-modelling concepts271

7.1.1 Static load models272

7.1.2 Dynamic load models274

7.2 Modelling of induction motors279

7.2.1 Equations of an induction machine279

7.2.2 Steady-state characteristics287

7.2.3 Alternative rotor constructions293

7.2.4 Representation of saturation296

7.2.5 Per unit representation297

7.2.6 Representation in stability studies300

7.3 Synchronous motor model306

7.4 Acquisition of load-model parameters306

7.4.1 Measurement-based approach306

7.4.2 Component-based approach308

7.4.3 Sample load characteristics310

References312

8 EXCITATION SYSTEMS315

8.1 Excitation system requirements315

8.2 Elements of an excitation system317

8.3 Types of excitation systems318

8.3.1 DC excitation systems319

8.3.2 AC excitation systems320

8.3.3 Static excitation systems323

8.3.4 Recent developments and future trends326

8.4 Dynamic performance measures327

8.4.1 Le??ge-signal Performance measures327

8.4.2 Small-signal performance measures330

8.5 Control and protective functions333

8.5.1 AC and DC regulators333

8.5.2 Excitation system stabilizing circuits334

8.5.3 Power system stabilizer(PSS)335

8.5.4 Load compensation335

8.5.5 Underexcitation limiter337

8.5.6 Overexcitation limiter337

8.5.7 Volts-per hertz limiter and protection339

8.5.8 Field-shorting circuits340

8.6 Modelling of excitation systems341

8.6.1 Per unit system342

8.6.2 Modelling of excitation system components347

8.6.3 Modelling of complete excitation systems362

8.6.4 Field testing for model development and verification372

References373

9 PRIME MOVERS AND ENERGY SUPPLY SYSTEMS377

9.1 Hydraulic turbines and governing systems377

9.1.1 Hydraulic turbine transfer function379

9.1.2 Nonlinear turbine model assuming inelastic water column387

9.1.3 Governors for hydraulic turbines394

9.1.4 Detailed hydraulic system model404

9.1.5 Guidelines for modelling hydraulic turbines417

9.2 Steam turbines and governing systems418

9.2.1 Modelling of steam turbines422

9.2.2 Steam turbine controls432

9.2.3 Steam turbine off-frequency capability444

9.3 Thermal energy systems449

9.3.1 Fossil-fuelled energy systems449

9.3.2 Nuclear-based energy systems455

9.3.3 Modelling of thermal energy systems459

References460

10 HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION463

10.1 HVDC system configurations and components464

10.1.1 Classification of HVDC links464

10.1.2 Components of HVDC transmission system467

10.2 Converter theory and performance equations468

10.2.1 Valve characteristics469

10.2.2 Converter circuits470

10.2.3 Converter transformer rating492

10.2.4 Multiple-bridge converters493

10.3 Abnormal operation498

10.3.1 Arc-back(backfire)498

10.3.2 Commutation failure499

10.4 Control of HVDC systems500

10.4.1 Basic principles of control500

10.4.2 Control implementation514

10.4.3 Converter firing-control systems516

10.4.4 Valve blocking and bypassing520

10.4.5 Starting, stopping, and power-flow reversal521

10.4.6 Controls for enhancement of ac system performance523

10.5 Harmonics and filters524

10.5.1 AC side harmonics524

10.5.2 DC side hermonics527

10.6 Influence of ac system strength on ac/dc system interaction528

10.6.1 Short-circuit ratio528

10.6.2 Reactive power and ac system strength529

10.6.3 Problems with low ESCR systems530

10.6.4 Solutions to problems associated with weak systems531

10.6.5 Effective inertia constant532

10.6.6 Forced commutation532

10.7 Responses to dc and ac system faults533

10.7.1 DC line faults534

10.7.2 Converter faults535

10.7.3 AC system faults535

10.8 Multiterminal HVDC systems538

10.8.1 MIDC network configurations539

10.8.2 Control of MTDC systems540

10.9 Modelling of HVDC systems544

10.9.1 Representation for power-flow solution544

10.9.2 Per unit system for dc quantities564

10.9.3 Representation for stability studies566

References577

11 CONTROL OF ACTIVE POWER AND REACTIVE POWER581

11.1 Active power and frequency control581

11.1.1 Fundamentals of speed governing582

11.1.2 Control of generating unit power output592

11.1.3 Composite regulating characteristic of power systems595

11.1.4 Response rates of turbine-governing systems598

11.1.5 Fundamentals of automatic generation control601

11.1.6 Implementation of AGC617

11.1.7 Underfrequency load shedding623

11.2 Reactive power and voltage control627

11.2.1 Production and absorption of reactive power627

11.2.2 Methods of voltage control628

11.2.3 Shunt reactors629

11.2.4 Shunt capacitors631

11.2.5 Series capacitors633

11.2.6 Synchronous condensers638

11.2.7 Static var systems639

11.2.8 Principles of transmission system compensation654

11.2.9 Modelling of reactive compensating devices672

11.2.10 Application of tap-changing transformers to transmission systems678

11.2.11 Distribution system voltage regulation679

11.2.12 Modelling of transformer ULTC control systems684

11.3 Power-flow analysis procedures687

11.3.1 Prefault power flows687

11.3.2 Postfault power flows688

References691

PART Ⅲ SYSTEM STABILITY:physical aspects,analysis,and improvement699

12 SMALL-SIGNAL STABILITY699

12.1 Fundamental concepts of stability of dynamic systems700

12.1.1 State-space representation700

12.1.2 Stability of a dynamic system702

12.1.3 Linearization703

12.1.4 Analysis of stability706

12.2 Eigenproperties of the state matrix707

12.2.1 Eigenvalues707

12.2.2 Eigenvectors707

12.2.3 Modal matrices708

12.2.4 Free motion of a dynamic system709

12.2.5 Mode shape,sensitivity,and participation factor714

12.2.6 Controllability and observability716

12.2.7 The concept of complex frequency717

12.2.8 Relationship between eigenproperties and transfer functions719

12.2.9 Computation of eigenvalues726

12.3 Small-signal stability of a single-machine infinite bus system727

12.3.1 Generator represented by the classical model728

12.3.2 Effects of synchronous machine field circuit dynamics737

12.4 Effects of excitation system758

12.5 Power system stabilizer766

12.6 System state matrix with amortisseurs782

12.7 Small-signal stability of multimachine systems792

12.8 Special techniques for analysis of very large systems799

12.9 Characteristics of small-signal stability problems817

References822

13 TRANSIENT STABILITY827

13.1 An elementary view of transient stability827

13.2 Numerical integration methods836

13.2.1 Euler method836

13.2.2 Modified Euler method838

13.2.3 Runge-Kutta(R-K)methods838

13.2.4 Numerical stability of explicit integration methods841

13.2.5 Implicit integration methods842

13.3 Simulation of power system dynamic response848

13.3.1 Structure of the power system model848

13.3.2 Synchronous machine representation849

13.3.3 Excitation system representation855

13.3.4 Transmission network and load representation858

13.3.5 Overall system equations859

13.3.6 Solution of overall system equations861

13.4 Analysis of unbalanced faults872

13.4.1 Introduction to symmetrical components872

13.4.2 Sequence impedances of synchronous machines877

13.4.3 Sequence impedances of transmission lines884

13.4.4 Sequence impedances of transformers884

13.4.5 Simulation of different types of faults885

13.4.6 Representation of open-conductor conditions898

13.5 Performance of protective relaying903

13.5.1 Transmission line protection903

13.5.2 Fault-clearing times911

13.5.3 Relaying quantities during swings914

13.5.4 Evaluation of distance relay performance during swings919

13.5.5 Prevention of tripping during transient conditions920

13.5.6 Automatic line reclosing922

13.5.7 Generator out-of-step protection923

13.5.8 Loss-of-excitation protection927

13.6 Case study of transient stability of a large system934

13.7 Direct method of transient stability analysis941

13.7.1 Description of the transient energy function approach941

13.7.2 Analysis of practical power systems945

13.7.3 Limitations of the direct methods954

References954

14 VOLTAGE STABILITY959

14.1 Basic concepts related to voltage stability960

14.1.1 Transmission system characteristics960

14.1.2 Generator characteristics967

14.1.3 Load characteristics968

14.1.4 Characteristics of reactive compensating devices969

14.2 Voltage collapse973

14.2.1 Typical scenario of voltage collapse974

14.2.2 General characterization based on actual incidents975

14.2.3 Classification of voltage stability976

14.3 Voltage stability analysis977

14.3.1 Modelling requirements978

14.3.2 Dynamic analysis978

14.3.3 Static analysis990

14.3.4 Determination of shortest distance to instability1007

14.3.5 The continuation power-flow analysis1012

14.4 Prevention of voltage collapse1019

14.4.1 System design measures1019

14.4.2 System-operating measures1021

References1022

15 SUBSYNCHRONOUS OSCILLATIONS1025

15.1 Turbine-generator torsional characteristics1026

15.1.1 Shaft system model1026

15.1.2 Torsional natural frequencies and mode shapes1034

15.2 Torsional interaction with power system controls1041

15.2.1 Interaction with generator excitation controls1041

15.2.2 Interaction with speed governors1047

15.2.3 Interaction with nearby dc converters1047

15.3 Subsynchronous resonance1050

15.3.1 Characteristics of series capacitor-compensated transmission systems1050

15.3.2 Self-excitation due to induction generator effect1052

15.3.3 Torsional interaction resulting in SSR1053

15.3.4 Analytical methods1053

15.3.5 Countermeasures to SSR problems1060

15.4 Impact of network-switching disturbances1061

15.5 Torsional interaction between closely coupled units1065

15.6 Hydro generator torsional characteristics1067

References1068

16 MID-TERM AND LONG-TERM STABILITY1073

16.1 Nature of system response to severs upsets1073

16.2 Distinction between mid-term and long-term stability1078

16.3 Power plant response during severe upsets1079

16.3.1 Thermal power plants1079

16.3.2 Hydro power plants1081

16.4 Simulation of long-term dynamic response1085

16.4.1 Purpose of long-term dynamic simulations1085

16.4.2 Modelling requirements1085

16.4.3 Numerical integration techniques1087

16.5 Case studies of severe system upsets1088

16.5.1 Case study involving an overgenerated island1088

16.5.2 Case study involving an undergenerated island1092

References1099

17 METHODS OF IMPROVING STABILITY1103

17.1 Transient stability enhancement1104

17.1.1 High-speed fault clearing1104

17.1.2 Reduction of transmission system reactance1104

17.1.3 Regulated shunt compensation1105

17.1.4 Dynamic braking1106

17.1.5 Reactor switching1106

17.1.6 Independent-pole operation of circuit breakers1107

17.1.7 Single-pole switching1107

17.1.8 Steam turbine fast-valving1110

17.1.9 Generator tripping1118

17.1.10 Controlled system separation and load shedding1120

17.1.11 High-speed excitation systems1121

17.1.12 Discontinuous excitation control1124

17.1.13 Control of HVDC transmission links1125

17.2 Small-signal stability enhancement1127

17.2.1 Power system stabilizers1128

17.2.2 Supplementary control of static var compensators1142

17.2.3 Supplementary control of HVDC transmission links1151

References1161

INDEX1167

热门推荐