图书介绍

PRINCIPLES OF NANO-OPTICS SECOND EDITIONPDF|Epub|txt|kindle电子书版本网盘下载

PRINCIPLES OF NANO-OPTICS SECOND EDITION
  • 出版社: CAMBRIDGE UNIVERSITY PRESS
  • ISBN:1107005469
  • 出版时间:2012
  • 标注页数:564页
  • 文件大小:138MB
  • 文件页数:578页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

PRINCIPLES OF NANO-OPTICS SECOND EDITIONPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

1.1 Nano-optics in a nutshell3

1.2 Historical survey4

1.3 Scope of the book7

References9

2 Theoretical foundations12

2.1 Macroscopic electrodynamics12

2.2 Wave equations14

2.3 Constitutive relations14

2.4 Spectral representation of time-dependent fields15

2.5 Fields as complex analytic signals16

2.6 Time-harmonic fields16

2.7 Longitudinal and transverse fields17

2.8 Complex dielectric constant18

2.9 Piecewise homogeneous media18

2.10 Boundary conditions19

2.10.1 Fresnel reflection and transmission coefficients20

2.11 Conservation of energy22

2.12 Dyadic Green functions25

2.12.1 Mathematical basis of Green functions25

2.12.2 Derivation of the Green function for the electric field27

2.12.3 Time-dependent Green functions30

2.13 Reciprocity31

2.14 Evanescent fields32

2.14.1 Energy transport by evanescent waves34

2.14.2 Frustrated total internal reflection36

2.15 Angular spectrum representation of optical fields38

2.15.1 Angular spectrum representation of the dipole field41

Problems42

References43

3 Propagation and focusing of optical fields45

3.1 Field propagators45

3.2 Paraxial approximation of optical fields47

3.2.1 Gaussian laser beams47

3.2.2 Higher-order laser modes49

3.2.3 Longitudinal fields in the focal region50

3.3 Polarized electric and polarized magnetic fields52

3.4 Far-fields in the angular spectrum representation53

3.5 Focusing of fields56

3.6 Focal fields60

3.7 Focusing of higher-order laser modes64

3.8 The limit of weak focusing68

3.9 Focusing near planar interfaces70

3.10 The reflected image of a strongly focused spot75

Problems82

References84

4 Resolution and localization86

4.1 The point-spread function86

4.2 The resolution limit(s)92

4.2.1 Increasing resolution through selective excitation94

4.2.2 Axial resolution96

4.2.3 Resolution enhancement through saturation98

4.3 Principles of confocal microscopy100

4.4 Axial resolution in multiphoton microscopy105

4.5 Localization and position accuracy106

4.5.1 Theoretical background107

4.5.2 Estimating the uncertainties of fit parameters110

4.6 Principles of near-field optical microscopy114

4.6.1 Information transfer from near-field to far-field118

4.7 Structured-illumination microscopy122

Problems126

References128

5 Nanoscale optical microscopy131

5.1 The interaction series131

5.2 Far-field optical microscopy techniques134

5.2.1 Confocal microscopy134

5.2.2 The solid immersion lens143

5.2.3 Localization microscopy145

5.3 Near-field excitation microscopy148

5.3.1 Aperture scanning near-field optical microscopy148

5.4 Near-field detection microscopy150

5.4.1 Scanning tunneling optical microscopy150

5.4.2 Field-enhanced near-field microscopy with crossed polarization153

5.5 Near-field excitation and detection microscopy154

5.5.1 Field-enhanced near-field microscopy154

5.5.2 Double-passage near-field microscopy159

5.6 Conclusion160

Problems160

References161

6 Localization of light with near-field probes165

6.1 Light propagation in a conical transparent dielectric probe165

6.2 Fabrication of transparent dielectric probes166

6.2.1 Tapered optical fibers167

6.3 Aperture probes170

6.3.1 Power transmission through aperture probes171

6.3.2 Field distribution near small apertures176

6.3.3 Field distribution near aperture probes181

6.3.4 Enhancement of transmission and directionality182

6.4 Fabrication of aperture probes184

6.4.1 Aperture formation by focused-ion-beam milling186

6.4.2 Alternative aperture-formation schemes187

6.5 Optical antenna probes188

6.5.1 Solid metal tips188

6.6 Conclusion195

Problems196

References197

7 Probe—sample distance control201

7.1 Shear-force methods202

7.1.1 Optical fibers as resonating beams202

7.1.2 Tuning-fork sensors205

7.1.3 The effective-harmonic-oscillator model206

7.1.4 Response time209

7.1.5 Equivalent electric circuit211

7.2 Normal-force methods213

7.2.1 Tuning fork in tapping mode213

7.2.2 Bent-fiber probes214

7.3 Topographic artifacts214

7.3.1 Phenomenological theory of artifacts216

7.3.2 Example of optical artifacts219

7.3.3 Discussion220

Problems221

References221

8 Optical interactions224

8.1 The multipole expansion224

8.2 The classical particle—field Hamiltonian228

8.2.1 Multipole expansion of the interaction Hamiltonian231

8.3 The radiating electric dipole233

8.3.1 Electric dipole fields in a homogeneous space234

8.3.2 Dipole radiation238

8.3.3 Rate of energy dissipation in inhomogeneous environments239

8.3.4 Radiation reaction240

8.4 Spontaneous decay242

8.4.1 QED of spontaneous decay243

8.4.2 Spontaneous decay and Green’s dyadics245

8.4.3 Local density of states248

8.5 Classical lifetimes and decay rates249

8.5.1 Radiation in homogeneous environments249

8.5.2 Radiation in inhomogeneous environments254

8.5.3 Frequency shifts254

8.6 Dipole—dipole interactions and energy transfer256

8.6.1 Multipole expansion of the Coulombic interaction256

8.6.2 Energy transfer between two particles257

8.7 Strong coupling (delocalized excitations)264

8.7.1 Coupled oscillators265

8.7.2 Adiabatic and diabatic transitions267

8.7.3 Coupled two-level systems272

8.7.4 Entanglement276

Problems277

References279

9 Quantum emitters282

9.1 Types of quantum emitters282

9.1.1 Fluorescent molecules282

9.1.2 Semiconductor quantum dots286

9.1.3 Color centers in diamond291

9.2 The absorption cross-section294

9.3 Single-photon emission by three-level systems296

9.3.1 Steady-state analysis297

9.3.2 Time-dependent analysis298

9.4 Single molecules as probes for localized fields303

9.4.1 Field distribution in a laser focus305

9.4.2 Probing strongly localized fields306

9.5 Conclusion309

Problems310

References310

10 Dipole emission near planar interfaces313

10.1 Allowed and forbidden light314

10.2 Angular spectrum representation of the dyadic Green function315

10.3 Decomposition of the dyadic Green function317

10.4 Dyadic Green functions for the reflected and transmitted fields318

10.5 Spontaneous decay rates near planar interfaces321

10.6 Far-fields323

10.7 Radiation patterns326

10.8 Where is the radiation going?329

10.9 Magnetic dipoles332

10.10 The image dipole approximation333

10.10.1 Vertical dipole334

10.10.2 Horizontal dipole334

10.10.3 Including retardation335

Problems335

References336

11 Photonic crystals,resonators,and cavity optomechanics338

11.1 Photonic crystals338

11.1.1 The photonic bandgap339

11.1.2 Defects in photonic crystals343

11.2 Metamaterials345

11.2.1 Negative-index materials345

11.2.2 Anomalous refraction and left-handedness348

11.2.3 Imaging with negative-index materials348

11.3 Optical microcavities350

11.3.1 Cavity perturbation356

11.4 Cavity optomechanics359

Problems365

References366

12 Surface plasmons369

12.1 Noble metals as plasmas370

12.1.1 Plasma oscillations370

12.1.2 The ponderomotive force372

12.1.3 Screening372

12.2 Optical properties of noble metals374

12.2.1 Drude—Sommerfeld theory374

12.2.2 Interband transitions375

12.3 Surface plasmon polaritons at plane interfaces377

12.3.1 Properties of surface plasmon polaritons380

12.3.2 Thin-film surface plasmon polaritons381

12.3.3 Excitation of surface plasmon polaritons383

12.3.4 Surface plasmon sensors387

12.4 Surface plasmons in nano-optics388

12.4.1 Plasmons supported by wires and particles391

12.4.2 Plasmon resonances of more complex structures403

12.4.3 Surface-enhanced Raman scattering403

12.5 Nonlinear plasmonics407

12.6 Conclusion408

Problems409

References411

13 Optical antennas414

13.1 Significance of optical antennas414

13.2 Elements of classical antenna theory416

13.3 Optical antenna theory420

13.3.1 Antenna parameters421

13.3.2 Antenna-coupled light—matter interactions433

13.3.3 Coupled-dipole antennas434

13.4 Quantum emitter coupled to an antenna437

13.5 Quantum yield enhancement440

13.6 Conclusion443

Problems443

References445

14 Optical forces448

14.1 Maxwell’s stress tensor449

14.2 Radiation pressure452

14.3 Lorentz force density453

14.4 The dipole approximation453

14.4.1 Time-averaged force455

14.4.2 Monochromatic fields456

14.4.3 Self-induced back-action458

14.4.4 Saturation behavior for near-resonance excitation459

14.4.5 Beyond the dipole approximation462

14.5 Optical tweezers463

14.6 Angular momentum and torque465

14.7 Forces in optical near-fields466

14.8 Conclusion470

Problems471

References472

15 Fluctuation-induced interactions474

15.1 The fluctuation—dissipation theorem474

15.1.1 The system response function475

15.1.2 Johnson noise479

15.1.3 Dissipation due to fluctuating external fields481

15.1.4 Normal and antinormal ordering482

15.2 Emission by fluctuating sources483

15.2.1 Blackbody radiation485

15.2.2 Coherence,spectral shifts,and heat transfer486

15.3 Fluctuation-induced forces488

15.3.1 The Casimir—Polder potential490

15.3.2 Electromagnetic friction494

15.4 Conclusion497

Problems497

References498

16 Theoretical methods in nano-optics500

16.1 The multiple-multipole method500

16.2 Volume-integral methods506

16.2.1 The volume-integral equation508

16.2.2 The method of moments (MOM)513

16.2.3 The coupled-dipole method (CDM)514

16.2.4 Equivalence of the MOM and the CDM515

16.3 Effective polarizability517

16.4 The total Green function518

16.5 Conclusion519

Problems519

References520

Appendix A Semi-analytical derivation of the atomic polarizability523

A.1 Steady-state polarizability for weak excitation fields526

A.2 Near-resonance excitation in the absence of damping528

A.3 Near-resonance excitation with damping530

Appendix B Spontaneous emission in the weak-coupling regime532

B.1 Weisskopf—Wigner theory532

B.2 Inhomogeneous environments534

References536

Appendix C Fields of a dipole near a layered substrate537

C.1 Vertical electric dipole537

C.2 Horizontal electric dipole538

C.3 Definition of the coefficients Aj,Bj,and Cj541

Appendix D Far-field Green functions543

Index545

热门推荐