图书介绍
PRINCIPLES OF NANO-OPTICS SECOND EDITIONPDF|Epub|txt|kindle电子书版本网盘下载
![PRINCIPLES OF NANO-OPTICS SECOND EDITION](https://www.shukui.net/cover/77/34100762.jpg)
- 著
- 出版社: CAMBRIDGE UNIVERSITY PRESS
- ISBN:1107005469
- 出版时间:2012
- 标注页数:564页
- 文件大小:138MB
- 文件页数:578页
- 主题词:
PDF下载
下载说明
PRINCIPLES OF NANO-OPTICS SECOND EDITIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Nano-optics in a nutshell3
1.2 Historical survey4
1.3 Scope of the book7
References9
2 Theoretical foundations12
2.1 Macroscopic electrodynamics12
2.2 Wave equations14
2.3 Constitutive relations14
2.4 Spectral representation of time-dependent fields15
2.5 Fields as complex analytic signals16
2.6 Time-harmonic fields16
2.7 Longitudinal and transverse fields17
2.8 Complex dielectric constant18
2.9 Piecewise homogeneous media18
2.10 Boundary conditions19
2.10.1 Fresnel reflection and transmission coefficients20
2.11 Conservation of energy22
2.12 Dyadic Green functions25
2.12.1 Mathematical basis of Green functions25
2.12.2 Derivation of the Green function for the electric field27
2.12.3 Time-dependent Green functions30
2.13 Reciprocity31
2.14 Evanescent fields32
2.14.1 Energy transport by evanescent waves34
2.14.2 Frustrated total internal reflection36
2.15 Angular spectrum representation of optical fields38
2.15.1 Angular spectrum representation of the dipole field41
Problems42
References43
3 Propagation and focusing of optical fields45
3.1 Field propagators45
3.2 Paraxial approximation of optical fields47
3.2.1 Gaussian laser beams47
3.2.2 Higher-order laser modes49
3.2.3 Longitudinal fields in the focal region50
3.3 Polarized electric and polarized magnetic fields52
3.4 Far-fields in the angular spectrum representation53
3.5 Focusing of fields56
3.6 Focal fields60
3.7 Focusing of higher-order laser modes64
3.8 The limit of weak focusing68
3.9 Focusing near planar interfaces70
3.10 The reflected image of a strongly focused spot75
Problems82
References84
4 Resolution and localization86
4.1 The point-spread function86
4.2 The resolution limit(s)92
4.2.1 Increasing resolution through selective excitation94
4.2.2 Axial resolution96
4.2.3 Resolution enhancement through saturation98
4.3 Principles of confocal microscopy100
4.4 Axial resolution in multiphoton microscopy105
4.5 Localization and position accuracy106
4.5.1 Theoretical background107
4.5.2 Estimating the uncertainties of fit parameters110
4.6 Principles of near-field optical microscopy114
4.6.1 Information transfer from near-field to far-field118
4.7 Structured-illumination microscopy122
Problems126
References128
5 Nanoscale optical microscopy131
5.1 The interaction series131
5.2 Far-field optical microscopy techniques134
5.2.1 Confocal microscopy134
5.2.2 The solid immersion lens143
5.2.3 Localization microscopy145
5.3 Near-field excitation microscopy148
5.3.1 Aperture scanning near-field optical microscopy148
5.4 Near-field detection microscopy150
5.4.1 Scanning tunneling optical microscopy150
5.4.2 Field-enhanced near-field microscopy with crossed polarization153
5.5 Near-field excitation and detection microscopy154
5.5.1 Field-enhanced near-field microscopy154
5.5.2 Double-passage near-field microscopy159
5.6 Conclusion160
Problems160
References161
6 Localization of light with near-field probes165
6.1 Light propagation in a conical transparent dielectric probe165
6.2 Fabrication of transparent dielectric probes166
6.2.1 Tapered optical fibers167
6.3 Aperture probes170
6.3.1 Power transmission through aperture probes171
6.3.2 Field distribution near small apertures176
6.3.3 Field distribution near aperture probes181
6.3.4 Enhancement of transmission and directionality182
6.4 Fabrication of aperture probes184
6.4.1 Aperture formation by focused-ion-beam milling186
6.4.2 Alternative aperture-formation schemes187
6.5 Optical antenna probes188
6.5.1 Solid metal tips188
6.6 Conclusion195
Problems196
References197
7 Probe—sample distance control201
7.1 Shear-force methods202
7.1.1 Optical fibers as resonating beams202
7.1.2 Tuning-fork sensors205
7.1.3 The effective-harmonic-oscillator model206
7.1.4 Response time209
7.1.5 Equivalent electric circuit211
7.2 Normal-force methods213
7.2.1 Tuning fork in tapping mode213
7.2.2 Bent-fiber probes214
7.3 Topographic artifacts214
7.3.1 Phenomenological theory of artifacts216
7.3.2 Example of optical artifacts219
7.3.3 Discussion220
Problems221
References221
8 Optical interactions224
8.1 The multipole expansion224
8.2 The classical particle—field Hamiltonian228
8.2.1 Multipole expansion of the interaction Hamiltonian231
8.3 The radiating electric dipole233
8.3.1 Electric dipole fields in a homogeneous space234
8.3.2 Dipole radiation238
8.3.3 Rate of energy dissipation in inhomogeneous environments239
8.3.4 Radiation reaction240
8.4 Spontaneous decay242
8.4.1 QED of spontaneous decay243
8.4.2 Spontaneous decay and Green’s dyadics245
8.4.3 Local density of states248
8.5 Classical lifetimes and decay rates249
8.5.1 Radiation in homogeneous environments249
8.5.2 Radiation in inhomogeneous environments254
8.5.3 Frequency shifts254
8.6 Dipole—dipole interactions and energy transfer256
8.6.1 Multipole expansion of the Coulombic interaction256
8.6.2 Energy transfer between two particles257
8.7 Strong coupling (delocalized excitations)264
8.7.1 Coupled oscillators265
8.7.2 Adiabatic and diabatic transitions267
8.7.3 Coupled two-level systems272
8.7.4 Entanglement276
Problems277
References279
9 Quantum emitters282
9.1 Types of quantum emitters282
9.1.1 Fluorescent molecules282
9.1.2 Semiconductor quantum dots286
9.1.3 Color centers in diamond291
9.2 The absorption cross-section294
9.3 Single-photon emission by three-level systems296
9.3.1 Steady-state analysis297
9.3.2 Time-dependent analysis298
9.4 Single molecules as probes for localized fields303
9.4.1 Field distribution in a laser focus305
9.4.2 Probing strongly localized fields306
9.5 Conclusion309
Problems310
References310
10 Dipole emission near planar interfaces313
10.1 Allowed and forbidden light314
10.2 Angular spectrum representation of the dyadic Green function315
10.3 Decomposition of the dyadic Green function317
10.4 Dyadic Green functions for the reflected and transmitted fields318
10.5 Spontaneous decay rates near planar interfaces321
10.6 Far-fields323
10.7 Radiation patterns326
10.8 Where is the radiation going?329
10.9 Magnetic dipoles332
10.10 The image dipole approximation333
10.10.1 Vertical dipole334
10.10.2 Horizontal dipole334
10.10.3 Including retardation335
Problems335
References336
11 Photonic crystals,resonators,and cavity optomechanics338
11.1 Photonic crystals338
11.1.1 The photonic bandgap339
11.1.2 Defects in photonic crystals343
11.2 Metamaterials345
11.2.1 Negative-index materials345
11.2.2 Anomalous refraction and left-handedness348
11.2.3 Imaging with negative-index materials348
11.3 Optical microcavities350
11.3.1 Cavity perturbation356
11.4 Cavity optomechanics359
Problems365
References366
12 Surface plasmons369
12.1 Noble metals as plasmas370
12.1.1 Plasma oscillations370
12.1.2 The ponderomotive force372
12.1.3 Screening372
12.2 Optical properties of noble metals374
12.2.1 Drude—Sommerfeld theory374
12.2.2 Interband transitions375
12.3 Surface plasmon polaritons at plane interfaces377
12.3.1 Properties of surface plasmon polaritons380
12.3.2 Thin-film surface plasmon polaritons381
12.3.3 Excitation of surface plasmon polaritons383
12.3.4 Surface plasmon sensors387
12.4 Surface plasmons in nano-optics388
12.4.1 Plasmons supported by wires and particles391
12.4.2 Plasmon resonances of more complex structures403
12.4.3 Surface-enhanced Raman scattering403
12.5 Nonlinear plasmonics407
12.6 Conclusion408
Problems409
References411
13 Optical antennas414
13.1 Significance of optical antennas414
13.2 Elements of classical antenna theory416
13.3 Optical antenna theory420
13.3.1 Antenna parameters421
13.3.2 Antenna-coupled light—matter interactions433
13.3.3 Coupled-dipole antennas434
13.4 Quantum emitter coupled to an antenna437
13.5 Quantum yield enhancement440
13.6 Conclusion443
Problems443
References445
14 Optical forces448
14.1 Maxwell’s stress tensor449
14.2 Radiation pressure452
14.3 Lorentz force density453
14.4 The dipole approximation453
14.4.1 Time-averaged force455
14.4.2 Monochromatic fields456
14.4.3 Self-induced back-action458
14.4.4 Saturation behavior for near-resonance excitation459
14.4.5 Beyond the dipole approximation462
14.5 Optical tweezers463
14.6 Angular momentum and torque465
14.7 Forces in optical near-fields466
14.8 Conclusion470
Problems471
References472
15 Fluctuation-induced interactions474
15.1 The fluctuation—dissipation theorem474
15.1.1 The system response function475
15.1.2 Johnson noise479
15.1.3 Dissipation due to fluctuating external fields481
15.1.4 Normal and antinormal ordering482
15.2 Emission by fluctuating sources483
15.2.1 Blackbody radiation485
15.2.2 Coherence,spectral shifts,and heat transfer486
15.3 Fluctuation-induced forces488
15.3.1 The Casimir—Polder potential490
15.3.2 Electromagnetic friction494
15.4 Conclusion497
Problems497
References498
16 Theoretical methods in nano-optics500
16.1 The multiple-multipole method500
16.2 Volume-integral methods506
16.2.1 The volume-integral equation508
16.2.2 The method of moments (MOM)513
16.2.3 The coupled-dipole method (CDM)514
16.2.4 Equivalence of the MOM and the CDM515
16.3 Effective polarizability517
16.4 The total Green function518
16.5 Conclusion519
Problems519
References520
Appendix A Semi-analytical derivation of the atomic polarizability523
A.1 Steady-state polarizability for weak excitation fields526
A.2 Near-resonance excitation in the absence of damping528
A.3 Near-resonance excitation with damping530
Appendix B Spontaneous emission in the weak-coupling regime532
B.1 Weisskopf—Wigner theory532
B.2 Inhomogeneous environments534
References536
Appendix C Fields of a dipole near a layered substrate537
C.1 Vertical electric dipole537
C.2 Horizontal electric dipole538
C.3 Definition of the coefficients Aj,Bj,and Cj541
Appendix D Far-field Green functions543
Index545