图书介绍
Introductory algebraic number theoryPDF|Epub|txt|kindle电子书版本网盘下载
![Introductory algebraic number theory](https://www.shukui.net/cover/12/33964158.jpg)
- Saban Alaca ; Kenneth S. Williams 著
- 出版社: Cambridge University Press
- ISBN:0521540119
- 出版时间:2004
- 标注页数:428页
- 文件大小:50MB
- 文件页数:447页
- 主题词:
PDF下载
下载说明
Introductory algebraic number theoryPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Integral Domains1
1.1 Integral Domains1
1.2 Irreducibles and Primes5
1.3 Ideals8
1.4 Principal Ideal Domains10
1.5 Maximal Ideals and Prime Ideals16
1.6 Sums and Products of Ideals21
Exercises23
Suggested Reading25
Biographies25
2 Euclidean Domains27
2.1 Euclidean Domains27
2.2 Examples of Euclidean Domains30
2.3 Examples of Domains That are Not Euclidean37
2.4 Almost Euclidean Domains46
2.5 Representing Primes by Binary Quadratic Forms47
Exercises49
Suggested Reading51
Biographies53
3 Noetherian Domains54
3.1 Noetherian Domains54
3.2 Factorization Domains57
3.3 Unique Factorization Domains60
3.4 Modules64
3.5 Noetherian Modules67
Exercises71
Suggested Reading72
Biographies73
4 Elements Integral over a Domain74
4.1 Elements Integral over a Domain74
4.2 Integral Closure81
Exercises86
Suggested Reading87
Biographies87
5 Algebraic Extensions of a Field88
5.1 Minimal Polynomial of an Element Algebraic over a Field88
5.2 Conjugates of α over K90
5.3 Conjugates of an Algebraic Integer91
5.4 Algebraic Integers in a Quadratic Field94
5.5 Simple Extensions98
5.6 Multiple Extensions102
Exercises106
Suggested Reading108
Biographies108
6 Algebraic Number Fields109
6.1 Algebraic Number Fields109
6.2 Conjugate Fields of an Algebraic Number Field112
6.3 The Field Polynomial of an Element of an Algebraic Number Field116
6.4 The Discriminant of a Set of Elements in an Algebraic Number Field123
6.5 Basis of an Ideal129
6.6 Prime Ideals in Rings of Integers137
Exercises138
Suggested Reading140
Biographies140
7 Integral Bases141
7.1 Integral Basis of an Algebraic Number Field141
7.2 Minimal Integers160
7.3 Some Integral Bases in Cubic Fields170
7.4 Index and Minimal Index of an Algebraic Number Field178
7.5 Integral Basis of a Cyclotomic Field186
Exercises189
Suggested Reading191
Biographies193
8 Dedekind Domains194
8.1 Dedekind Domains194
8.2 Ideals in a Dedekind Domain195
8.3 Factorization into Prime Ideals200
8.4 Order of an Ideal with Respect to a Prime Ideal206
8.5 Generators of Ideals in a Dedekind Domain215
Exercises216
Suggested Reading217
9 Norms of Ideals218
9.1 Norm of an Integral Ideal218
9.2 Norm and Trace of an Element222
9.3 Norm of a Product of Ideals228
9.4 Norm of a Fractional Ideal231
Exercises233
Suggested Reading234
Biographies235
10 Factoring Primes in a Number Field236
10.1 Norm of a Prime Ideal236
10.2 Factoring Primes in a Quadratic Field241
10.3 Factoring Primes in a Monogenic Number Field249
10.4 Some Factorizations in Cubic Fields253
10.5 Factoring Primes in an Arbitrary Number Field257
10.6 Factoring Primes in a Cyclotomic Field260
Exercises261
Suggested Reading262
11 Units in Real Quadratic Fields264
11.1 The Units of Z + Z?2264
11.2 The Equation x2 - my 2 = 1267
11.3 Units of Norm 1271
11.4 Units of Norm -1275
11.5 The Fundamental Unit278
11.6 Calculating the Fundamental Unit286
11.7 The Equation x2 - my 2 = N294
Exercises297
Suggested Reading298
Biographies298
12 The Ideal Class Group299
12.1 Ideal Class Group299
12.2 Minkowski’s Translate Theorem300
12.3 Minkowski’s Convex Body Theorem305
12.4 Minkowski’s Linear Forms Theorem306
12.5 Finiteness of the Ideal Class Group311
12.6 Algorithm to Determine the Ideal Class Group314
12.7 Applications to Binary Quadratic Forms331
Exercises341
Suggested Reading343
Biographies343
13 Dirichlet’s Unit Theorem344
13.1 Valuations of an Element of a Number Field344
13.2 Properties of Valuations346
13.3 Proof of Dirichlet’s Unit Theorem359
13.4 Fundamental System of Units361
13.5 Roots of Unity363
13.6 Fundamental Units in Cubic Fields369
13.7 Regulator378
Exercises382
Suggested Reading383
Biographies384
14 Applications to Diophantine Equations385
14.1 Insolvability of y2 = x3 + k Using Congruence Considerations385
14.2 Solving y2 = x3 + k Using Algebraic Numbers389
14.3 The Diophantine Equation y(y+1)=x(x+1)(x+2)401
Exercises410
Suggested Reading411
Biographies411
List of Definitions413
Location of Theorems417
Location of Lemmas421
Bibliography423
Index425