图书介绍
Discrete mathematics for computer scientistsPDF|Epub|txt|kindle电子书版本网盘下载
![Discrete mathematics for computer scientists](https://www.shukui.net/cover/14/33935397.jpg)
- Robert L. Drysdale ; Kenneth P. Bogart ; Clifford Stein 著
- 出版社: Pearson;Addison-Wesley
- ISBN:132122715
- 出版时间:2011
- 标注页数:496页
- 文件大小:63MB
- 文件页数:529页
- 主题词:
PDF下载
下载说明
Discrete mathematics for computer scientistsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Counting1
1.1 Basic Counting1
The Sum Principle1
Abstraction3
Summing Consecutive Integers3
The Product Principle4
Two-Element Subsets6
Important Concepts,Formulas,and Theorems7
Problems8
1.2 Counting Lists,Permutations,and Subsets10
Using the Sum and Product Principles10
Lists and Functions12
The Bijection Principle14
k-Element Permutations of a Set15
Counting Subsets of a Set16
Important Concepts,Formulas,and Theorems18
Problems20
1.3 Binomial Coefficients22
Pascal’s Triangle22
A Proof Using the Sum Principle24
The Binomial Theorem26
Labeling and Trinomial Coefficients28
Important Concepts,Formulas,and Theorems29
Problems30
1.4 Relations32
What Is a Relation?32
Functions as Relations33
Properties of Relations33
Equivalence Relations36
Partial and Total Orders39
Important Concepts,Formulas,and Theorems41
Problems42
1.5 Using Equivalence Relations in Counting43
The Symmetry Principle43
Equivalence Relations45
The Quotient Principle46
Equivalence Class Counting46
Multi sets48
The Bookcase Arrangement Problem50
The Number of k-Element Multisets of an n-Element Set51
Using the Quotient Principle to Explain a Quotient52
Important Concepts,Formulas,and Theorems53
Problems54
CHAPTER 2 Cryptography and Number Theory59
2.1 Cryptography and Modular Arithmetic59
Introduction to Cryptography59
Private-Key Cryptography60
Public-Key Cryptosystems63
Arithmetic Modulo n65
Cryptography Using Addition mod n68
Cryptography Using Multiplication mod n69
Important Concepts,Formulas,and Theorems71
Problems72
2.2 Inverses and Greatest Common Divisors75
Solutions to Equations and Inverses mod n75
Inverses mod n76
Converting Modular Equations to Normal Equations79
Greatest Common Divisors80
Euclid’s Division Theorem81
Euclid’s GCD Algorithm84
Extended GCD Algorithm85
Computing Inverses88
Important Concepts,Formulas,and Theorems89
Problems90
2.3 The RSA Cryptosystem93
Exponentiation mod n93
The Rules of Exponents93
Fermat’s Little Theorem96
The RSA Cryptosystem97
The Chinese Remainder Theorem101
Important Concepts,Formulas,and Theorems102
Problems104
2.4 Details of the RSA Cryptosystem106
Practical Aspects of Exponentiation mod n106
How Long Does It Take to Use the RSA Algorithm?109
How Hard Is Factoring?110
Finding Large Primes110
Important Concepts,Formulas,and Theorems113
Problems114
CHAPTER 3 Reflections on Logic and Proof117
3.1 Equivalence and Implication117
Equivalence of Statements117
Truth Tables120
DeMorgan’s Laws123
Implication125
If and Only If126
Important Concepts,Formulas,and Theorems129
Problems131
3.2 Variables and Quantifiers133
Variables and Universes133
Quantifiers134
Standard Notation for Quantification136
Statements about Variables138
Rewriting Statements to Encompass Larger Universes138
Proving Quantified Statements True or False139
Negation of Quantified Statements140
Implicit Quantification143
Proof of Quantified Statements144
Important Concepts,Formulas,and Theorems145
Problems147
3.3 Inference149
Direct Inference (Modus Ponens) and Proofs149
Rules of Inference for Direct Proofs151
Contrapositive Rule of Inference153
Proof by Contradiction155
Important Concepts,Formulas,and Theorems158
Problems159
CHAPTER 4 Induction,Recursion,and Recurrences161
4.1 Mathematical Induction161
Smallest Counterexamples161
The Principle of Mathematical Induction165
Strong Induction169
Induction in General171
A Recursive View of Induction173
Structural Induction176
Important Concepts,Formulas,and Theorems178
Problems180
4.2 Recursion,Recurrences,and Induction183
Recursion183
Examples of First-Order Linear Recurrences185
Iterating a Recurrence187
Geometric Series188
First-Order Linear Recurrences191
Important Concepts,Formulas,and Theorems195
Problems197
4.3 Growth Rates of Solutions to Recurrences198
Divide and Conquer Algorithms198
Recursion Trees201
Three Different Behaviors209
Important Concepts,Formulas,and Theorems210
Problems212
4.4 The Master Theorem214
Master Theorem214
Solving More General Kinds of Recurrences217
Extending the Master Theorem218
Important Concepts,Formulas,and Theorems220
Problems221
4.5 More General Kinds of Recurrences222
Recurrence Inequalities222
The Master Theorem for Inequalities223
A Wrinkle with Induction225
Further Wrinkles in Induction Proofs227
Dealing with Functions Other Than nc230
Important Concepts,Formulas,and Theorems232
Problems233
4.6 Recurrences and Selection235
The Idea of Selection235
A Recursive Selection Algorithm236
Selection without Knowing the Median in Advance237
An Algorithm to Find an Element in the Middle Half239
An Analysis of the Revised Selection Algorithm242
Uneven Divisions244
Important Concepts,Formulas,and Theorems246
Problems247
CHAPTER 5 Probability249
5.1 Introduction to Probability249
Why Study Probability?249
Some Examples of Probability Computations252
Complementary Probabilities253
Probability and Hashing254
The Uniform Probability Distribution256
Important Concepts,Formulas,and Theorems259
Problems260
5.2 Unions and Intersections262
The Probability of a Union of Events262
Principle of Inclusion and Exclusion for Probability265
The Principle of Inclusion and Exclusion for Counting271
Important Concepts,Formulas,and Theorems273
Problems274
5.3 Conditional Probability and Independence276
Conditional Probability276
Bayes’ Theorem280
Independence280
Independent Trials Processes282
Tree Diagrams284
Primality Testing288
Important Concepts,Formulas,and Theorems289
Problems290
5.4 Random Variables292
What Are Random Variables?292
Binomial Probabilities293
A Taste of Generating Functions295
Expected Value296
Expected Values of Sums and Numerical Multiples299
Indicator Random Variables302
The Number of Trials until the First Success304
Important Concepts,Formulas,and Theorems306
Problems307
5.5 Probability Calculations in Hashing310
Expected Number of Items per Location310
Expected Number of Empty Locations311
Expected Number of Collisions312
Expected Maximum Number of Elements in a Location of a Hash Table315
Important Concepts,Formulas,and Theorems320
Problems321
5.6 Conditional Expectations,Recurrences,and Algorithms325
When Running Times Depend on More than Size of Inputs325
Conditional Expected Values327
Randomized Algorithms329
Selection Revisited331
QuickSort333
A More Careful Analysis of RandomSelect336
Important Concepts,Formulas,and Theorems339
Problems340
5.7 Probability Distributions and Variance343
Distributions of Random Variables343
Variance346
Important Concepts,Formulas,and Theorems354
Problems355
CHAPTER 6 Graphs359
6.1 Graphs359
The Degree of a Vertex363
Connectivity365
Cycles367
Trees368
Other Properties of Trees368
Important Concepts,Formulas,and Theorems371
Problems373
6.2 Spanning Trees and Rooted Trees375
Spanning Trees375
Breadth-First Search377
Rooted Trees382
Important Concepts,Formulas,and Theorems386
Problems387
6.3 Eulerian and Hamiltonian Graphs389
Eulerian Tours and Trails389
Finding Eulerian Tours394
Hamiltonian Paths and Cycles395
NP-Complete Problems401
Proving That Problems Are NP-Complete403
Important Concepts,Formulas,and Theorems406
Problems407
6.4 Matching Theory410
The Idea of a Matching410
Making Matchings Bigger414
Matching in Bipartite Graphs417
Searching for Augmenting Paths in Bipartite Graphs417
The Augmentation-Cover Algorithm420
Efficient Algorithms426
Important Concepts,Formulas,and Theorems427
Problems428
6.5 Coloring and Planarity430
The Idea of Coloring430
Interval Graphs433
Planarity435
The Faces of a Planar Drawing437
The Five-Color Theorem441
Important Concepts,Formulas,and Theorems444
Problems445
APPENDIX A Derivation of the More General Master Theorem449
More General Recurrences449
Recurrences for General n451
Removing Floors and Ceilings452
Floors and Ceilings in the Stronger Version of the Master Theorem453
Proofs of Theorems453
Important Concepts,Formulas,and Theorems457
Problems458
APPENDIX B Answers and Hints to Selected Problems461
Bibliography477
Index479