图书介绍
Partial differential equations Second Edition volume 19PDF|Epub|txt|kindle电子书版本网盘下载
![Partial differential equations Second Edition volume 19](https://www.shukui.net/cover/12/33926862.jpg)
- Lawrence C. Evans 著
- 出版社: American Mathematical Society
- ISBN:0821849743
- 出版时间:2010
- 标注页数:752页
- 文件大小:65MB
- 文件页数:777页
- 主题词:
PDF下载
下载说明
Partial differential equations Second Edition volume 19PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Introduction1
1.1.Partial differential equations1
1.2.Examples3
1.2.1.Single partial differential equations3
1.2.2.Systems of partial differential equations6
1.3.Strategies for studying PDE6
1.3.1.Well-posed problems,classical solutions7
1.3.2.Weak solutions and regularity7
1.3.3.Typical difficulties9
1.4.Overview9
1.5.Problems12
1.6.References13
PART Ⅰ:REPRESENTATION FORMULAS FOR SOLUTIONS17
2.Four Important Linear PDE17
2.1.Transport equation18
2.1.1.Initial-value problem18
2.1.2.Nonhomogeneous problem19
2.2.Laplace’s equation20
2.2.1.Fundamental solution21
2.2.2.Mean-value formulas25
2.2.3.Properties of harmonic functions26
2.2.4.Green’s function33
2.2.5.Energy methods41
2.3.Heat equation44
2.3.1.Fundamental solution45
2.3.2.Mean-value formula51
2.3.3.Properties of solutions55
2.3.4.Energy methods62
2.4.Wave equation65
2.4.1.Solution by spherical means67
2.4.2.Nonhomogeneous problem80
2.4.3.Energy methods82
2.5.Problems84
2.6.References90
3.Nonlinear First-Order PDE91
3.1.Complete integrals,envelopes92
3.1.1.Complete integrals92
3.1.2.New solutions from envelopes94
3.2.Characteristics96
3.2.1.Derivation of characteristic ODE96
3.2.2.Examples99
3.2.3.Boundary conditions102
3.2.4.Local solution105
3.2.5.Applications109
3.3.Introduction to Hamilton-Jacobi equations114
3.3.1.Calculus of variations,Hamilton’s ODE115
3.3.2.Legendre transform,Hopf-Lax formula120
3.3.3.Weak solutions,uniqueness128
3.4.Introduction to conservation laws135
3.4.1.Shocks,entropy condition136
3.4.2.Lax-Oleinik formula143
3.4.3.Weak solutions,uniqueness148
3.4.4.Riemann’s problem153
3.4.5.Long time behavior156
3.5.Problems161
3.6.References165
4.Other Ways to Represent Solutions167
4.1.Separation of variables167
4.1.1.Examples168
4.1.2.Application:Turing instability172
4.2.Similarity solutions176
4.2.1.Plane and traveling waves,solitons176
4.2.2.Similarity under scaling185
4.3.Transform methods187
4.3.1.Fourier transform187
4.3.2.Radon transform196
4.3.3.Laplace transform203
4.4.Converting nonlinear into linear PDE206
4.4.1.Cole-Hopf transformation206
4.4.2.Potential functions208
4.4.3.Hodograph and Legendre transforms209
4.5.Asymptotics211
4.5.1.Singular perturbations211
4.5.2.Laplace’s method216
4.5.3.Geometric optics,stationary phase218
4.5.4.Homogenization229
4.6.Power series232
4.6.1.Noncharacteristic surfaces232
4.6.2.Real analytic functions237
4.6.3.Cauchy-Kovalevskaya Theorem239
4.7.Problems244
4.8.References249
PARTⅡ:THEORY FOR LINEAR PARTIAL DIFFERENTIAL EQUATIONS253
5.Sobolev Spaces253
5.1.Holder spaces254
5.2.Sobolev spaces255
5.2.1.Weak derivatives255
5.2.2.Definition of Sobolev spaces258
5.2.3.Elementary properties261
5.3.Approximation264
5.3.1.Interior approximation by smooth functions264
5.3.2.Approximation by smooth functions265
5.3.3.Global approximation by smooth functions266
5.4.Extensions268
5.5.Traces271
5.6.Sobolev inequalities275
5.6.1.Gagliardo-Nirenberg-Sobolev inequality276
5.6.2.Morrey’s inequality280
5.6.3.General Sobolev inequalities284
5.7.Compactness286
5.8.Additional topics289
5.8.1.Poincare’s inequalities289
5.8.2.Difierence quotients291
5.8.3.Difierentiability a.e.295
5.8.4.Hardy’s inequality296
5.8.5.Fourier transform methods297
5.9.Other spaces of functions299
5.9.1.The space H-1299
5.9.2.Spaces involving time301
5.10.Problems305
5.11.References309
6.Second-Order Elliptic Equations311
6.1.Definitions311
6.1.1.Elliptic equations311
6.1.2.Weak solutions313
6.2.Existence of weak solutions315
6.2.1.Lax-Milgram Theorem315
6.2.2.Energy estimates317
6.2.3.Fredholm alternative320
6.3.Regularity326
6.3.1.Interior regularity327
6.3.2.Boundary regularity334
6.4.Maximum principles344
6.4.1.Weak maximum principle344
6.4.2.Strong maximum principle347
6.4.3.Harnack’s inequality351
6.5.Eigenvalues and eigenfunctions354
6.5.1.Eigenvalues of symmetric elliptic operators354
6.5.2.Eigenvalues of nonsymmetric elliptic operators360
6.6.Problems365
6.7.References370
7.Linear Evolution Equations371
7.1.Second-order parabolic equations371
7.1.1.Definitions372
7.1.2.Existence of weak solutions375
7.1.3.Regularity380
7.1.4.Maximum principles389
7.2.Second-order hyperbolic equations398
7.2.1.Definitions398
7.2.2.Existence of weak solutions401
7.2.3.Regularity408
7.2.4.Propagation of disturbances414
7.2.5.Equations in two variables418
7.3.Hyperbolic systems of first-order equations421
7.3.1.Definitions421
7.3.2.Symmetric hyperbolic systems423
7.3.3.Systems with constant coefficients429
7.4.Semigroup theory433
7.4.1.Definitions,elementary properties434
7.4.2.Generating contraction semigroups439
7.4.3.Applications441
7.5.Problems446
7.6.References449
PARTⅢ:THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS453
8.The Calculus of Variations453
8.1.Introduction453
8.1.1.Basic ideas453
8.1.2.First variation,Euler-Lagrange equation454
8.1.3.Second variation458
8.1.4.Systems459
8.2.Existence of minimizers465
8.2.1.Coercivity,lower semicontinuity465
8.2.2.Convexity467
8.2.3.Weak solutions of Euler-Lagrange equation472
8.2.4.Systems475
8.2.5.Local minimizers480
8.3.Regularity482
8.3.1.Second derivative estimates483
8.3.2.Remarks on higher regularity486
8.4.Constraints488
8.4.1.Nonlinear eigenvalue problems488
8.4.2.Unilateral constraints,variational inequalities492
8.4.3.Harmonic maps495
8.4.4.Incompressibility497
8.5.Critical points501
8.5.1.Mountain Pass Theorem501
8.5.2.Application to semilinear elliptic PDE507
8.6.Invariance,Noether’s Theorem511
8.6.1.Invariant variational problems512
8.6.2.Noether’s Theorem513
8.7.Problems520
8.8.References525
9.Nonvariational Techniques527
9.1.Monotonicity methods527
9.2.Fixed point methods533
9.2.1.Banach’s Fixed Point Theorem534
9.2.2.Schauder’s,Schaefer’s Fixed Point Theorems538
9.3.Method of subsolutions and supersolutions543
9.4.Nonexistence of solutions547
9.4.1.Blow-up547
9.4.2.Derrick-Pohozaev identity551
9.5.Geometric properties of solutions554
9.5.1.Star-shaped level sets554
9.5.2.Radial symmetry555
9.6.Gradient flows560
9.6.1.Convex functions on Hilbert spaces560
9.6.2.Subdifferentials and nonlinear semigroups565
9.6.3.Applications571
9.7.Problems573
9.8.References577
10.Hamilton-Jacobi Equations579
10.1.Introduction,viscosity solutions579
10.1.1.Definitions581
10.1.2.Consistency583
10.2.Uniqueness586
10.3.Control theory,dynamic programming590
10.3.1.Introduction to optimal control theory591
10.3.2.Dynamic programming592
10.3.3.Hamilton-Jacobi-Bellman equation594
10.3.4.Hopf-Lax formula revisited600
10.4.Problems603
10.5.References606
11.Systems of Conservation Laws609
11.1.Introduction609
11.1.1.Integral solutions612
11.1.2.Traveling waves,hyperbolic systems615
11.2.Riemann’s problem621
11.2.1.Simple waves621
11.2.2.Rarefaction waves624
11.2.3.Shock waves,contact discontinuities625
11.2.4.Local solution of Riemann’s problem632
11.3.Systems of two conservation laws635
11.3.1.Riemann invariants635
11.3.2.Nonexistence of smooth solutions639
11.4.Entropy criteria641
11.4.1.Vanishing viscosity,traveling waves642
11.4.2.Entropy/entropy-flux pairs646
11.4.3.Uniqueness for scalar conservation laws649
11.5.Problems654
11.6.References657
12.Nonlinear Wave Equations659
12.1.Introduction659
12.1.1.Conservation of energy660
12.1.2.Finite propagation speed660
12.2.Existence of solutions663
12.2.1.Lipschitz nonlinearities663
12.2.2.Short time existence666
12.3.Semilinear wave equations670
12.3.1.Sign conditions670
12.3.2.Three space dimensions674
12.3.3.Subcritical power nonlinearities676
12.4.Critical power nonlinearity679
12.5.Nonexistence of solutions686
12.5.1.Nonexistence for negative energy687
12.5.2.Nonexistence for small initial data689
12.6.Problems691
12.7.References696
APPENDICES697
Appendix A:Notation697
A.1.Notation for matrices697
A.2.Geometric notation698
A.3.Notation for functions699
A.4.Vector-valued functions703
A.5.Notation for estimates703
A.6.Some comments about notation704
Appendix B:Inequalities705
B.1.Convex functions705
B.2.Useful inequalities706
Appendix C:Calculus710
C.1.Boundaries710
C.2.Gauss-Green Theorem711
C.3.Polar coordinates,coarea formula712
C.4.Moving regions713
C.5.Convolution and smoothing713
C.6.Inverse Function Theorem716
C.7.Implicit Function Theorem717
C.8.Uniform convergence718
Appendix D:Functional Analysis719
D.1.Banach spaces719
D.2.Hilbert spaces720
D.3.Bounded linear operators721
D.4.Weak convergence723
D.5.Compact operators,Fredholm theory724
D.6.Symmetric operators728
Appendix E:Measure Theory729
E.1.Lebesgue measure729
E.2.Measurable functions and integration730
E.3.Convergence theorems for integrals731
E.4.Differentiation732
E.5.Banach space-valued functions733
Bibliography735
Index741