图书介绍

Optical electronics in modern communications = 现代通信光电子学 (第五版) (英文版)PDF|Epub|txt|kindle电子书版本网盘下载

Optical electronics in modern communications = 现代通信光电子学 (第五版) (英文版)
  • Amnon Yariv 著
  • 出版社: Pub. House of Electronics Industry
  • ISBN:7505379593
  • 出版时间:2002
  • 标注页数:746页
  • 文件大小:100MB
  • 文件页数:771页
  • 主题词:光通信与传输

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Optical electronics in modern communications = 现代通信光电子学 (第五版) (英文版)PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 ELECTROMAGNETIC THEORY1

1.0 Introduction1

1.1 Complex-Function Formalism1

Time-Averaging of Sinusoidal Products3

1.2 Considerations of Energy and Power in Electromagnetic Fields3

Dipolar Dissipation in Harmonic Fields5

1.3 Wave Propagation in Isotropic Media7

Power Flow in Harmonic Fields10

1.4 Wave Propagation in Crystals—The Index Ellipsoid12

Birefringence13

Index Ellipsoid14

Normal (index) Surfaces17

1.5 Jones Calculus and Its Application to Propagation in Optical Systems with Birefringent Crystals17

Intensity Transmission24

Circular Polarization Representation26

Faraday Rotation27

1.6 Diffraction of Electromagnetic Waves30

PROBLEMS34

REFERENCES38

Chapter 2 THE PROPAGATION OF RAYS AND BEAMS39

2.0 Introduction39

2.1 Lens Waveguide39

Identical-Lens Waveguide44

2.2 Propagation of Rays Between Mirrors45

Reentrant Rays45

2.3 Rays in Lenslike Media46

2.4 Wave Equation in Quadratic Index Media48

2.5 Gaussian Beams in a Homogeneous Medium50

2.6 Fundamental Gaussian Beam in a Lenslike Medium—The ABCD Law53

Transformation of the Gaussian Beam—The ABCD Law54

2.7 A Gaussian Beam in Lens Waveguide57

2.8 High-Order Gaussian Beam Modes in a Homogeneous Medium57

2.9 High-Order Gaussian Beam Modes in Quadratic Index Media58

Pulse Spreading in Quadratic Index Glass Fibers63

2.10 Propagation in Media with a Quadratic Gain Profile65

2.11 Elliptic Gaussian Beams66

Elliptic Gaussian Beams in a Quadratic Lenslike Medium69

2.12 Diffraction Integral for a Generalized Paraxial A,B,C,D System70

PROBLEMS72

REFERENCES74

Chapter 3 PROPAGATION OF OPTICAL BEAMS IN FIBERS76

3.0 Introduction76

3.1 Wave Equations in Cylindrical Coordinates77

3.2 The Step-Index Circular Waveguide80

Mode Characteristics and Cutoff Conditions83

3.3 Linearly Polarized Modes89

Power Flow and Power Density96

3.4 Optical Pulse Propagation and Pulse Spreading in Fibers98

Frequency Chirp105

3.5 Compensation for Group Velocity Dispersion106

Compensation for Pulse Broadening by Fibers with Opposite Dispersion108

Compensation for Pulse Broadening by Phase Conjugation108

3.6 Analogy of Spatial Diffraction and Temporal Dispersion113

3.7 Attenuation in Silica Fibers115

PROBLEMS116

REFERENCES119

Chapter 4 OPTICAL RESONATORS121

4.0 Introduction121

Mode Density in Optical Resonators122

4.1 Fabry-Perot Etalon125

4.2 Fabry-Perot Etalons as Optical Spectrum Analyzers129

4.3 Optical Resonators with Spherical Mirrors132

Optical Resonator Algebra133

The Symmetrical Mirror Resonator134

4.4 Mode Stability Criteria135

4.5 Modes in a Generalized Resonator—The Self-Consistent Method138

Stability of the Resonator Modes139

4.6 Resonance Frequencies of Optical Resonators140

4.7 Losses in Optical Resonators143

4.8 Optical Resonators—Diffraction Theory Approach145

Equivalent Resonator Systems149

4.9 Mode Coupling154

Equivalent Resonator Systems149

Mode Solution by Numerical Iteration151

PROBLEMS156

REFERENCES158

Chapter 5 INTERACTION OF RADIATION AND ATOMIC SYSTEMS159

5.0 Introduction159

5.1 Spontaneous Transitions Between Atomic Levels—Homogeneous and Inhomogeneous Broadening159

The Concept of Spontaneous Emission160

Lineshape Function—Homogeneous and Inhomogeneous Broadening161

Homogeneous and Inhomogeneous Broadening162

5.2 Induced Transitions165

5.3 Absorption and Amplification168

5.4 Derivation of X′(v)171

5.5 The Significance of X(v)174

5.6 Gain Saturation in Homogeneous Laser Media176

5.7 Gain Saturation in Inhomogeneous Laser Media179

PROBLEMS182

REFERENCES183

Chapter 6 THEORY OF LASER OSCILLATION AND ITS CONTROL IN THE CONTINUOUS AND PULSED REGIMES185

6.0 Introduction185

6.1 Fabry-Perot Laser185

6.2 Oscillation Frequency189

6.3 Three- and Four-Level Lasers192

6.4 Power in Laser Oscillators194

Rate Equations194

6.5 Optimum Output Coupling in Laser Oscillators197

6.6 Multimode Laser Oscillation and Mode Locking201

Mode Locking203

Methods of Mode Locking206

Theory of Mode Locking210

6.7 Mode Locking in Homogeneously Broadened Laser Systems212

Transfer Function of the Gain Medium213

Transfer Function of the Loss Cell213

Mode Locking by Phase Modulation217

6.8 Pulse Length Measurement and Narrowing of Chirped Pulses218

Pulse Narrowing by Chirping and Compression222

The Grating Pair Compressor226

6.9 Giant Pulse (Q-switched) Lasers227

Methods of Q-Switching233

6.10 Hole-Burning and the Lamb Dip in Doppler-Broadened Gas Lasers235

PROBLEMS238

REFERENCES239

Chapter 7 SOME SPECIFIC LASER SYSTEMS242

7.0 Introduction242

7.1 Pumping and Laser Efficiency242

7.2 Ruby Laser243

7.3 Nd3+:YAG Laser248

7.4 Neodymium-Glass Laser251

7.5 He-Ne Laser255

7.6 Carbon Dioxide Laser257

7.7 Ar+ Laser259

7.8 Excimer Lasers260

7.9 Organic-Dye Lasers262

7.10 High-Pressure Operation of Gas Lasers267

7.11 The Er-Silica Laser270

PROBLEMS270

REFERENCES270

Chapter 8 SECOND-HARMONIC GENERATION AND PARAMETRIC OSCILLATION273

8.0 Introduction273

8.1 On the Physical Origin of Nonlinear Polarization273

8.2 Formalism of Wave Propagation in Nonlinear Media282

8.3 Optical Second-Harmonic Generation285

Phase-Matching in Second-Harmonic Generation286

Experimental Verification of Phase-Matching290

Second-Harmonic Generation with Focused Gaussian Beams291

Second-Harmonic Generation with a Depleted Input293

8.4 Second-Harmonic Generation Inside the Laser Resonator295

8.5 Photon Model of Second-Harmonic Generation299

8.6 Parametric Amplification300

8.7 Phase-Matching in Parametric Amplification306

8.8 Parametric Oscillation308

8.9 Frequency Tuning in Parametric Oscillation311

8.10 Power Output and Pump Saturation in Optical Parametric Oscillators314

8.11 Frequency Up-Conversion316

8.12 Quasi Phase-Matching319

Quasi Phase-Matchingin Crystal Dielectric Waveguides320

PROBLEMS322

REFERENCES323

Chapter 9 ELECTROOPTIC MODULATION OF LASER BEAMS326

9.0 Introduction326

9.1 Electrooptic Effect326

The General Solution333

9.2 Electrooptic Retardation341

9.3 Electrooptic Amplitude Modulation344

9.4 Phase Modulation of Light347

9.5 Transverse Electrooptic Modulators348

9.6 High-Frequency Modulation Considerations349

Transit-Time Limitations to High-Frequency Electrooptic Modulation350

Traveling-Wave Modulators351

9.7 Electrooptic Beam Deflection353

9.8 Electrooptic Modulation—Coupled Wave Analysis356

The Wave Equation358

9.9 Phase Modulation360

Amplitude Modulation (advanced topic)364

PROBLEMS367

REFERENCES370

Chapter 10 NOISE IN OPTICAL DETECTION AND GENERATION372

10.0 Introduction372

10.1 Limitations Due to Noise Power373

Measurement of Optical Power373

10.2 Noise—Basic Definitions and Theorems376

Wiener-Khintchine Theorem378

10.3 The Spectral Density Function of a Train of Randomly Occurring Events379

10.4 Shot Noise381

10.5 Johnson Noise383

Statistical Derivation of Johnson Noise386

10.6 Spontaneous Emission Noise in Laser Oscillators388

10.7 Phasor Derivation of the Laser Linewidth393

The Phase Noise393

The Laser Field Spectrum396

10.8 Coherence and Interference401

Delayed Self-Heterodyning of Laser Fields404

Special Case td?Tc406

10.9 Error Probability in a Binary Pulse Code Modulation System407

PROBLEMS410

REFERENCES411

Chapter 11 DETECTION OF OPTICAL RADIATION413

11.0 Introduction413

11.1 Optically Induced Transition Rates414

11.2 Photomultiplier415

11.3 Noise Mechanisms in Photomultipliers417

Mimimum Detectable Power in Photomultipliers—Video Detection418

Signal-Limited Shot Noise420

11.4 Heterodyne Detection with Photomultipliers421

Limiting Sensitivity as a Result of the Particle Nature of Light423

11.5 Photoconductive Detectors425

Generation Recombination Noise in Photoconductive Detectors428

Heterodyne Detection in Photoconductors430

11.6 The p-n Junction432

11.7 Semiconductor Photodiodes436

Frequency Response of Photodiodes438

Detection Sensitivity of Photodiodes443

11.8 The Avalanche Photodiode446

11.9 Power Fluctuation Noise in Lasers449

11.10 Infrared Imaging and Background-Limited Detection454

11.11 Optical Amplification in Fiber Links461

PROBLEMS470

REFERENCES471

Chapter 12 INTERACTION OF LIGHT AND SOUND474

12.0 Introduction474

12.1 Scattering of Light by Sound474

12.2 Particle Picture of Bragg Diffraction of Light by Sound477

Doppler Derivation of the Frequency Shift478

12.3 Bragg Diffraction of Light by Acoustic Waves—Analysis479

12.4 Deflection of Light by Sound486

PROBLEMS489

REFERENCES490

Chapter 13 PROPAGATION AND COUPLING OF MODES IN OPTICAL DIELECTRIC WAVEGUIDES—PERIODIC WAVEGUIDES491

13.0 Introduction491

13.1 Waveguide Modes—A General Discussion492

Confined Modes in a Symmetric Slab Waveguide494

13.2 TE and TM Modes in an Asymmetric Slab Waveguide499

TE Modes499

TM Modes501

13.3 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides502

13.4 Periodic Waveguide504

Some General Properties of the Coupled Mode Equations506

13.5 Coupled-Mode Solutions509

Numerical Example512

13.6 Periodic Waveguides as Optical Filters and Reflectors—Periodic Fibers512

13.7 Electrooptic Modulation and Mode Coupling in Dielectric Waveguides515

13.8 Directional Coupling521

13.9 The Eigenmodes of a Coupled Waveguide System (supermodes)526

13.10 Laser Arrays531

PROBLEMS538

REFERENCES539

Chapter 14 HOLOGRAPHY AND OPTICAL DATA STORAGE541

14.0 Introduction541

14.1 The Mathematical Basis of Holography542

The Holographic Process Viewed as Bragg Diffraction542

Basic Holography Formalism545

14.2 The Coupled Wave Analysis of Volume Holograms546

Multihologram Recording and Readout—Crosstalk549

Wavelength Multiplexing552

Crosstalk in Data-Bearing Holograms552

PROBLEMS556

REFERENCES557

Chapter 15 SEMICONDUCTOR LASERS—THEORY AND APPLICATIONS558

15.0 Introduction558

15.1 Some Semiconductor Physics Background559

The Fermi-Dirac Distribution Law562

15.2 Gain and Absorption in Semiconductor (laser) Media565

15.3 GaAs/Ga1—xA1xAs Lasers570

15.4 Some Real Laser Structures577

Quaternary GaInAsP Semiconductor Lasers578

Power Output of Injection Lasers581

15.5 Direct-Current Modulation of Semiconductor Lasers582

15.6 Gain Suppression and Frequency Chirp in Current-Modulated Semiconductor Lasers587

Amplitude-phase coupling592

The Field Spectrum of a Chirping Laser594

15.7 Integrated Optoelectronics596

PROBLEMS599

REFERENCES601

Chapter 16 ADVANCED SEMICONDUCTOR LASERS:QUANTUM WELL LASERS,DISTRIBUTED FEEDBACK LASERS,VERTICAL CAVITY SURFACE EMITTING LASERS604

16.0 Introduction604

16.1 Carriers in Quantum Wells (Advanced Topic)605

The Density of States608

16.2 Gain in Quantum Well Lasers610

Multiquantum Well Laser614

16.3 Distributed Feedback Lasers616

Oscillation Condition619

Gain-Coupled Distributed Feedback Lasers626

16.4 Vertical Cavity Surface Emitting Semiconductor Lasers628

The Oscillation Condition of a Vertical Cavity Laser630

The Bragg Mirror631

The Oscillation Frequencies633

PROBLEMS636

REFERENCES637

Chapter 17 PHASE CONJUGATE OPTICS—THEORY AND APPLICATIONS639

17.0 Introduction and Background639

17.1 The Distortion Correction Theorem640

17.2 The Generation of Phase Conjugate Waves641

17.3 The Coupled-Mode Formulation of Phase Conjugate Optics643

Some Consideration of Units648

17.4 Some Experiments Involving Phase Conjugation649

17.5 Optical Resonators with Phase Conjugate Reflectors651

17.6 The ABCD Formalism of Phase Conjugate Optical Resonators653

The ABCD Matrix of a Phase Conjugate Mirror653

17.7 Dynamic Distortion Correction Within a Laser Resonator655

17.8 Holographic Analogs of Phase Conjugate Optics657

17.9 Imaging Through a Distorted Medium659

17.10 Image Processing by Four-Wave Mixing661

17.11 Compensation of Fiber Dispersion665

PROBLEMS665

REFERENCES665

Chapter 18 TWO-BEAM COUPLING AND PHASE CONJUGATION IN PHOTOREFRACTIVE MEDIA668

18.0 Introduction668

18.1 Two-Wave Coupling in a Fixed Grating669

18.2 The Photorefractive Effect—Two Beam Coupling671

The Grating Formation680

Refractive Two-Beam Coupling681

Two-Beam Coupling—Symmetric Geometry683

18.3 Photorefractive Self-Pumped Phase Conjugation684

18.4 Applications of Photorefractive Oscillators686

Rotation Sensing686

Mathematical and Logic Operations of Images688

PROBLEMS691

REFERENCES691

Chapter 19 OPTICAL SOLITONS693

19.0 Introduction693

19.1 The Mathematical Description of Solitons693

The Wave Equation695

Numerical Example—Optical Solitons in Silica Fibers699

PROBLEMS700

REFERENCES701

Chapter 20 A CLASSICAL TREATMENT OF QUANTUM OPTICS,QUANTUM NOISE,AND SQUEEZING703

20.0 Introduction703

20.1 The Quantum Uncertainty Goes Classical703

The Uncertainty Principle704

The Energy of an Electromagnetic Mode709

Uncertainty in Energy709

Phase Uncertainty710

Fluctuation of Photoelectron Number710

Minimum Detectable Optical Power Increment711

20.2 Squeezing of Optical Fields712

Experimental Demonstrations of Squeezing716

REFERENCES721

Appendix A THE KRAMERS-KRONIG RELATIONS723

Appendix B THE ELECTROOPTIC EFFECT IN CUBIC 43m CRYSTALS726

Appendix C NOISE IN TRAVELING WAVE LASER AMPLIFIERS730

Appendix D TRANSFORMATION OF A COHERENT ELECTROMAGNETIC FIELD BY A THIN LENS734

Index737

热门推荐