图书介绍
有限元方法 流体力学 第7版PDF|Epub|txt|kindle电子书版本网盘下载
![有限元方法 流体力学 第7版](https://www.shukui.net/cover/29/31925226.jpg)
- (英)辛克维奇著 著
- 出版社: 世界图书北京出版公司
- ISBN:9787510098512
- 出版时间:2015
- 标注页数:544页
- 文件大小:152MB
- 文件页数:579页
- 主题词:有限元法-英文;有限元法-应用-流体力学-英文
PDF下载
下载说明
有限元方法 流体力学 第7版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Introduction to the Equations of Fluid Dynamics and the Finite Element Approximation1
1.1 General remarks and classification of fluid dynamics problems discussed in this book1
1.2 The governing equations of fluid dynamics5
1.2.1 Velocity,strain rates,and stresses in fluids5
1.2.2 Constitutive relations for fluids6
1.2.3 Mass conservation7
1.2.4 Momentum conservation:Dynamic equilibrium7
1.2.5 Energy conservation and equation of state8
1.2.6 Boundary conditions10
1.2.7 Navier-Stokes and Euler equations10
1.3 Inviscid,incompressible flow12
1.3.1 Velocity potential solution12
1.4 Incompressible(or nearly incompressible)flows14
1.5 Numerical solutions:Weak forms,weighted residual,and finite element approximation15
1.5.1 Strong and weak forms15
1.5.2 Weighted residual approximation17
1.5.3 The Galerkin finite element method18
1.5.4 A finite volume approximation25
1.6 Concluding remarks28
References28
CHAPTER 2 Convection-Dominated Problems:Finite Element Approximations to the Convection-Diffusion-Reaction Equation31
2.1 Introduction31
2.2 The steady-state problem in one dimension34
2.2.1 General remarks34
2.2.2 Petrov-Galerkin methods for upwinding in one dimension39
2.2.3 Balancing diffusion in one dimension43
2.2.4 A variational principle in one dimension43
2.2.5 Galerkin least-squares approximation(GLS)in one dimension45
2.2.6 Subgrid scale(SGS)approximation46
2.2.7 The finite increment calculus(FIC)for stabilizing the convective-diffusion equation in one dimension47
2.2.8 Higher-order approximations48
2.3 The steady-state problem in two(or three)dimensions49
2.3.1 General remarks49
2.3.2 Streamline(upwind)Petrov-Galerkin weighting(SUPG)49
2.3.3 Galerkin least squares(GLS)and finite increment calculus(FIC)in multidimensional problems53
2.4 Steady state:Concluding remarks54
2.5 Transients:Introductory remarks54
2.5.1 Mathematical background54
2.5.2 Possible discretization procedures55
2.6 Characteristic-based methods57
2.6.1 Mesh updating and interpolation methods57
2.6.2 Characteristic-Galerkin procedures58
2.6.3 A simple explicit characteristic-Galerkin procedure60
2.6.4 Boundary conditions:Radiation66
2.7 Taylor-Galerkin procedures for scalar variables70
2.8 Steady-state condition71
2.9 Nonlinear waves and shocks71
2.10 Treatment of pure convection76
2.11 Boundary conditions for convection-diffusion78
2.12 Summary and concluding remarks79
References80
CHAPTER 3 The Characteristic-Based Split(CBS)Algorithm:A General Procedure for Compressible and Incompressible Flow87
3.1 Introduction87
3.2 Nondimensional form of the governing equations89
3.3 Characteristic-based split(CBS)algorithm90
3.3.1 The split:General remarks90
3.3.2 The split:Temporal discretization91
3.3.3 Spatial discretization and solution procedure94
3.3.4 Mass diagonalization(lumping)99
3.4 Explicit,semi-implicit,and nearly implicit forms100
3.4.1 Fully explicit form100
3.4.2 Semi-implicit form100
3.4.3 Quasi-(nearly)implicit form101
3.4.4 Evaluation of time step limits:Local and global time steps101
3.5 Artificial compressibility and dual time stepping103
3.5.1 Artificial compressibility for steady-state problems103
3.5.2 Artificial compressibility in transient problems(dual time stepping)104
3.6 "Circumvention"of the Babu?ka-Brezzi(BB)restrictions106
3.7 A single-step version107
3.8 Splitting error109
3.8.1 Elimination of first-order pressure error110
3.9 Boundary conditions110
3.9.1 Fictitious boundaries110
3.9.2 Real boundaries112
3.9.3 Application of real boundary conditions in the discretization using the CBS algorithm112
3.10 The performance of two-and single-step algorithms on an inviscid problem114
3.11 Performance of dual time stepping to remove pressure error116
3.12 Concluding remarks118
References118
CHAPTER 4 Incompressible Newtonian Laminar Flows127
4.1 Introduction and the basic equations127
4.2 Use of the CBS algorithm for incompressible flows129
4.2.1 The fully explicit artificial compressibility form129
4.2.2 The semi-implicit form129
4.2.3 Quasi-implicit solution139
4.3 Adaptive mesh refinement140
4.3.1 Second gradient(curvature)based refinement143
4.3.2 Local patch interpolation:Superconvergent values145
4.3.3 Estimation of second derivatives at nodes146
4.3.4 Element elongation146
4.3.5 First derivative(gradient)based refinement148
4.3.6 Choice of variables149
4.3.7 An example149
4.4 Adaptive mesh generation for transient problems149
4.5 Slow flows:Mixed and penalty formulations151
4.5.1 Analogy with incompressible elasticity151
4.5.2 Mixed and penalty discretization151
4.6 Concluding remarks153
References155
CHAPTER 5 Incompressible Non-Newtonian Flows163
5.1 Introduction163
5.2 Non-Newtonian flows:Metal and polymer forming163
5.2.1 Non-Newtonian flows including viscoplasticity and plasticity163
5.2.2 Steady-state problems of forming166
5.2.3 Transient problems with changing boundaries169
5.2.4 Elastic springback and viscoelastic fluids174
5.3 Viscoelastic flows177
5.3.1 Governing equations179
5.4 Direct displacement approach to transient metal forming185
5.5 Concluding remarks187
References188
CHAPTER 6 Free Surface and Buoyancy Driven Flows195
6.1 Introduction195
6.2 Free surface flows195
6.2.1 General remarks195
6.2.2 Lagrangian method197
6.2.3 Eulerian methods200
6.2.4 Arbitrary Langrangian-Eulerian(ALE)method210
6.3 Buoyancy driven flows215
6.4 Concluding remarks218
References219
CHAPTER 7 Compressible High-Speed Gas Flow225
7.1 Introduction225
7.2 The governing equations226
7.3 Boundary conditions:Subsonic and supersonic flow227
7.3.1 Euler equation228
7.3.2 Navier-Stokes equations229
7.4 Numerical approximations and the CBS algorithm230
7.5 Shock capture231
7.5.1 Second derivative-based methods232
7.5.2 Residual-based methods233
7.6 Variable smoothing234
7.7 Some preliminary examples for the Euler equation234
7.8 Adaptive refinement and shock capture in Euler problems238
7.8.1 General238
7.8.2 The h-refinement process and mesh enrichment243
7.8.3 h-refinement and remeshing in steady-state two-dimensional problems245
7.9 Three-dimensional inviscid examples in steady state246
7.9.1 Solution of the flow pattern around a complete aircraft253
7.9.2 THRUST:The supersonic car255
7.10 Transient two-and three-dimensional problems256
7.11 Viscous problems in two dimensions260
7.11.1 Adaptive refinement in both shock and boundary layer262
7.11.2 Special adaptive refinement for boundary layers and shocks264
7.12 Three-dimensional viscous problems271
7.13 Boundary layer:Inviscid Euler solution coupling271
7.14 Concluding remarks273
References274
CHAPTER 8 Turbulent Flows283
8.1 Introduction283
8.1.1 Time averaging284
8.1.2 Relation between κ,ε,and vT286
8.2 Treatment of incompressible turbulent flows286
8.2.1 Reynolds-averaged Navier-Stokes286
8.2.2 One-equation models287
8.2.3 Two-equation models288
8.2.4 Nondimensional form of the governing equations289
8.2.5 Shortest distance to a solid wall291
8.2.6 Solution procedure for turbulent flow equations292
8.3 Treatment of compressible flows298
8.3.1 Mass-weighted(Favre)time averaging300
8.4 Large eddy simulation(LES)303
8.5 Detached eddy simulation(DES)and monotonically integrated LES(MILES)305
8.6 Direct numerical simulation(DNS)306
8.7 Concluding remarks306
References306
CHAPTER 9 Generalized Flow and Heat Transfer in Porous Media309
9.1 Introduction309
9.2 A generalized porous medium flow approach310
9.2.1 Nondimensional scales313
9.3 Discretization procedure315
9.3.1 Semi-and quasi-implicit forms315
9.4 Forced convection316
9.5 Natural convection318
9.5.1 Constant-porosity medium319
9.6 Concluding remarks323
References324
CHAPTER 10 Shallow-Water Problems327
10.1 Introduction327
10.2 The basis of the shallow-water equations328
10.3 Numerical approximation332
10.4 Examples of application334
10.4.1 Transient one-dimensional problems:A performance assessment334
10.4.2 Two-dimensional periodic tidal motions334
10.4.3 Tsunami waves339
10.4.4 Steady-state solutions343
10.5 Drying areas346
10.6 Shallow-water transport346
10.7 Concluding remarks349
References349
CHAPTER 11 Long and Medium Waves355
11.1 Introduction and equations355
11.2 Waves in closed domains:Finite element models356
11.3 Difficulties in modeling surface waves358
11.4 Bed friction and other effects358
11.5 The short-wave problem359
11.6 Waves in unbounded domains(exterior surface wave problems)359
11.6.1 Background to wave problems359
11.6.2 Wave diffraction360
11.6.3 Incident waves,domain integrals,and nodal values362
11.7 Unbounded problems362
11.8 Local nonreflecting boundary conditions(NRBCs)363
11.8.1 Sponge layers or perfectly matched layers(PMLs)365
11.9 Infinite elements366
11.9.1 Mapped periodic(unconjugated)infinite elements366
11.9.2 Ellipsoidal type infinite elements of Burnett and Holford368
11.9.3 Wave envelope(or conjugated)infinite elements369
11.9.4 Accuracy of infinite elements371
11.9.5 Other applications371
11.9.6 Trefftz-type infinite elements372
11.10 Convection and wave refraction372
11.11 Transient problems374
11.12 Linking to exterior solutions(or DtN mapping)375
11.12.1 Linking to boundary integrals376
11.12.2 Linking to series solutions376
11.13 Three-dimensional effects in surface waves377
11.13.1 Large-amplitude water waves379
11.13.2 Cnoidal and solitary waves381
11.13.3 Stokes waves381
11.14 Concluding remarks383
References383
CHAPTER 12 Short Waves389
12.1 Introduction389
12.2 Background389
12.3 Errors in wave modeling391
12.4 Recent developments in short-wave modeling391
12.5 Transient solution of electromagnetic scattering problems392
12.6 Finite elements incorporating wave shapes392
12.6.1 Shape functions using products of polynomials and waves394
12.6.2 Shape functions using sums of polynomials and waves397
12.6.3 The discontinuous enrichment method398
12.6.4 Ultra weak formulation399
12.6.5 Trefftz-type finite elements for waves401
12.7 Refraction404
12.7.1 Wave speed refraction405
12.7.2 Refraction caused by flows410
12.8 Spectral finite elements for waves412
12.9 Discontinuous Galerkin finite elements(DGFE)414
12.10 Concluding remarks415
References417
CHAPTER 13 Fluid-Structure Interaction423
13.1 Introduction423
13.2 One-dimensional fluid-structure interaction424
13.2.1 Equations424
13.2.2 Characteristic analysis427
13.2.3 Boundary conditions429
13.2.4 Solution method:Taylor-Galerkin method430
13.2.5 Some results433
13.3 Multidimensional problems435
13.3.1 Equations and discretization435
13.3.2 Segregated approach440
13.3.3 Mesh moving procedures441
13.4 Concluding remarks446
References446
CHAPTER 14 Biofluid Dynamics451
14.1 Introduction451
14.2 Flow in human arterial system451
14.2.1 Heart452
14.2.2 Reflections458
14.2.3 Aortic valve458
14.2.4 Vessel branching460
14.2.5 Terminal vessels462
14.2.6 Numerical solution464
14.3 Image-based subject-specific flow modeling470
14.3.1 Image segmentation471
14.3.2 Geometrical potential force(GPF)471
14.3.3 Numerical solution,initial and boundary conditions472
14.3.4 Domain discretization472
14.3.5 Flow solution473
14.4 Concluding remarks479
References479
CHAPTER 15 Computer Implementation of the CBS Algorithm485
15.1 Introduction485
15.2 The data input module486
15.2.1 Mesh data:Nodal coordinates and connectivity486
15.2.2 Boundary data486
15.2.3 Other necessary data and flags487
15.2.4 Preliminary subroutines and checks487
15.3 Solution module487
15.3.1 Time step488
15.3.2 Shock capture488
15.3.3 CBS algorithm:Steps489
15.3.4 Boundary conditions489
15.3.5 Solution of simultaneous equations:Semi-implicit form490
15.3.6 Different forms of energy equation490
15.3.7 Convergence to steady state490
15.4 Output module490
References490
APPENDIX A Self-Adjoint Differential Equations493
APPENDIX B Nonconservative Form of Navier-Stokes Equations495
APPENDIX C Computing the Drag Force and Stream Function497
APPENDIX D Convection-Diffusion Equations:Vector-Valued Variables499
APPENDIX E Integration Formulae509
APPENDIX F Edge-Based Finite Element Formulation511
APPENDIX G Boundary Layer-Inviscid Flow Coupling515
APPENDIX H Multigrid Method519
APPENDIX I Mass-Weighted Averaged Turbulence Transport Equations521
Author Index525
Subject Index539