图书介绍
振动理论及应用 第5版PDF|Epub|txt|kindle电子书版本网盘下载
- 汤姆逊(Thomson,W.T.),达利(Dahleh,M.D.)著 著
- 出版社: 清华大学出版社
- ISBN:7302121370
- 出版时间:2005
- 标注页数:524页
- 文件大小:102MB
- 文件页数:40137761页
- 主题词:振动理论-高等学校-教材-英文
PDF下载
下载说明
振动理论及应用 第5版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
THE SI SYSTEM OF UNITS1
CHAPTER 1 OSCILLATORY MOTION5
1.1 Harmonic Motion6
1.2 Periodic Motion9
1.3 Vibration Terminology11
CHAPTER 2 FREE VIBRATION16
2.1 Vibration Model16
2.2 Equation of Motion: Natural Frequency16
2.3 Energy Method20
2.4 Rayleigh Method: Effective Mass23
2.5 Principle of Virtual Work25
2.6 Viscously Damped Free Vibration27
2.7 Logarithmic Decrement31
2.8 Coulomb Damping35
CHAPTER 3 HARMONICALLY EXCITED VIBRATION49
3.1 Forced Harmonic Vibration49
3.2 Rotating Unbalance53
3.3 Rotor Unbalance56
3.4 Whirling of Rotating Shafts59
3.5 Support Motion63
3.6 Vibration Isolation65
3.7 Energy Dissipated by Damping67
3.8 Equivalent Viscous Damping70
3.9 Structural Damping72
3.10 Sharpness of Resonance74
3.11 Vibration-Measuring Instruments75
CHAPTER 4 TRANSIENT VIBRATION89
4.1 Impulse Excitation89
4.2 Arbitrary Excitation91
4.3 Laplace Transform Formulation94
4.4 Pulse Excitation and Rise Time97
4.5 Shock Response Spectrum100
4.6 Shock Isolation104
4.7 Finite Difference Numerical Computation105
4.8 Runge-Kutta Method112
CHAPTER 5 SYSTEMS WITH TWO OR MORE DEGREES OF FREEDOM126
5.1 The Normal Mode Analysis127
5.2 Initial Conditions131
5.3 Coordinate Coupling134
5.4 Forced Harmonic Vibration139
5.5 Finite Difference Method for Systems of Equations141
5.6 Vibration Absorber144
5.7 Centrifugal Pendulum Vibration Absorber145
5.8 Vibration Damper147
CHAPTER 6 PROPERTIES OF VIBRATING SYSTEMS163
6.1 Flexibility Influence Coefficients164
6.2 Reciprocity Theorem167
6.3 Stiffness Influence Coefficients172
6.4 Stiffness Matrix of Beam Elements176
6.5 Static Condensation for Pinned Joints176
6.6 Orthogonality of Eigenvectors177
6.7 Modal Matrix179
6.8 Decoupling Forced Vibration Equations181
6.9 Modal Damping in Forced Vibration182
6.10 Normal Mode Summation183
6.11 Equal Roots187
6.12 Unrestrained (Degenerate) Systems189
CHAPTER 7 LAGRANGE’S EQUATION199
7.1 Generalized Coordinates199
7.2 Virtual Work204
7.3 Lagrange’s Equation207
7.4 Kinetic Energy, Potential Energy,and Generalized Force in Terms of Generalized Coordinates q214
7.5 Assumed Mode Summation216
CHAPTER 8 COMPUTATIONAL METHODS227
8.1 Root Solving227
8.2 Eigenvectors by Gauss Elimination229
8.3 Matrix Iteration230
8.4 Convergence of the Iteration Procedure233
8.5 The Dynamic Matrix233
8.6 Transformation Coordinates (Standard Computer Form)234
8.7 Systems with Discrete Mass Matrix235
8.8 Cholesky Decomposition237
8.9 Jacobi Diagonalization242
8.10 QR Method for Eigenvalue and Eigenvector Calculation247
CHAPTER 9 VIBRATION OF CONTINUOUS SYSTEMS258
9.1 Vibrating String268
9.2 Longitudinal Vibration of Rods271
9.3 Torsional Vibration of Rods273
9.4 Vibration of Suspension Bridges276
9.5 Euler Equation for Beams281
9.6 System with Repeated Identical Sections286
CHAPTER 10 INTRODUCTION TO THE FINITE ELEMENT METHOD287
10.1 Element Stiffness and Mass287
10.2 Stiffness and Mass for the Beam Element292
10.3 Transformation of Coordinates(Global Coordinates)295
10.4 Element Stiffness and Element Mass in Global Coordinates297
10.5 Vibrations Involving Beam Elements302
10.6 Spring Constraints on Structure309
10.7 Generalized Force for Distributed Load311
10.8 Generalized Force Proportional to Displacement313
CHAPTER 11 MODE-SUMMATION PROCEDURESFOR CONTINUOUS SYSTEMS329
11.1 Mode-Summation Method329
11.2 Normal Modes of Constrained Structures335
11.3 Mode-Acceleration Method339
11.4 Component-Mode Synthesis341
CHAPTER 12 CLASSICAL METHODS351
12.1 Rayleigh Method351
12.2 Dunkerley’s Equation358
12.3 Rayleigh-Ritz Method363
12.4 Holzer Method366
12.5 Digital Computer Program for the Torsional System369
12.6 Myklestad’s Method for Beams371
12.7 Coupled Flexure-Torsion Vibration375
12.8 Transfer Matrices376
12.9 Systems with Damping378
12.10 Geared System380
12.11 Branched Systems381
12.12 Transfer Matrices for Beams383
CHAPTER 13 RANDOM VIBRATIONS395
13.1 Random Phenomena395
13.2 Time Averaging and Expected Value396
13.3 Frequency Response Function398
13.4 Probability Distribution401
13.5 Correlation407
13.6 Power Spectrum and Power Spectral Density411
13.7 Fourier Transforms417
13.8 FTs and Response424
CHAPTER 14 NONLINEAR VIBRATIONS436
14.1 Phase Plane436
14.2 Conservative Systems438
14.3 Stability of Equilibrium441
14.4 Method of Isoclines443
14.5 Perturbation Method445
14.6 Method of Iteration448
14.7 Self-Excited Oscillations451
14.8 Runge-Kutta Method453
APPENDICES462
A Specifications of Vibration Bounds462
B Introduction to Laplace Transformation464
C Determinants and Matirces469
D Normal Modes of Uniform Beams479
E Introduction to MATLAB?487
F Computer Programs492
G Convergence to Higher Modes501
ANSWERS TO SELECTED PROBLEMS506
INDEX519