图书介绍
HEATPDF|Epub|txt|kindle电子书版本网盘下载
![HEAT](https://www.shukui.net/cover/49/31625409.jpg)
- THERMODYNAMICS 著
- 出版社: AND STATISTICAL PHYSICS
- ISBN:
- 出版时间:未知
- 标注页数:0页
- 文件大小:68MB
- 文件页数:717页
- 主题词:
PDF下载
下载说明
HEATPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER ONE Introduction1
1.1 Introduction to Thermodynamics1
1.2 Large-Scale or Macroscopic View1
1.3 Molecular or Microscopic View2
1.4 Systems and Their Surroundings3
1.5 Walls and Boundaries4
Rigid Walls4
Cylinder and Piston4
Diathermic Walls4
Adiabatic Walls4
Semipermeable Walls4
Isolating Walls5
1.6 Thermodynamic Equilibrium5
1.7 Thermal Equilibrium and the Zeroth Law5
1.8 Temperature as a Property of a System8
1.9 The Equation of State and the Temperature Scale9
1.10 Intensive and Extensive Properties11
1.11 Thermodynamic States of a System:Degrees of Freedom13
1.12 The Two-Phase System16
1.13 Other Systems18
Thin Uniform Filament under Tension19
Systems with Surface Tension19
Charged Soap Bubble19
1.14 Quasistatic Processes and Reversibility20
PROBLEMS22
CHAPTER TWO Temperature24
2.1 Measurement of Temperature24
2.2 General Temperature Scales25
2.3 Various Celsius Thermometers27
2.4 Criteria for Good Thermometers28
2.5 Gas Thermometers29
The Constant-Volume Thermometer30
The Constant-Pressure Thermometer30
2.6 The Thermodynamic Celsius Scale31
2.7 Boyle's Law and the Ideal Gas Celsius Scale35
2.8 Empirical Behavior of Gases34
2.9 The Absolute Gas Scale36
2.10 Correction of the Constant-Volume Gas Thermometer38
2.11 Correction of the Constant-Pressure Thermometer40
2.12 Numerical Magnitudes of Corrections44
2.13 Primary and Secondary Thermometers45
2.14 The Platinum Resistance Thermometer47
2.15 The Thermocouple49
2.16 New Basis for the Thermodynamic Scale50
PROBLEMS51
CHAPTER THREE The Equation of State53
3.1 The Ideal Gas53
3.2 The Universal Gas Constant55
3.3 Units56
Volume56
Pressure56
Pressure-Volume(pV)57
3.4 The P-V-T Surface57
3.5 The Reciprocal and the Reciprocity Theorems60
3.6 Thermodynamic Coefficients61
3.7 The P-V-T Relation for a Pure Substance62
3.8 The Kamerlingh Onnes Equation66
3.9 Van der Waals'Equation68
3.10 Berthelot's Equation72
3.11 Dieterici's Equation74
3.12 The Beattie-Bridgeman Equation75
3.13 The Equation of State in Virial Form75
3.14 Solid and Liquid States77
PROBLEMS79
CHAPTER FOUR The First Law of Thermodynamics82
4.1 Measurement of Heat82
4.2 Heat Capacity and the Unit of Heat83
4.3 Method of Mixtures85
4.4 Mechanical Nature of Heat87
4.5 Mechanical Equivalent of Heat89
Direct Mechanical Determinations90
Electrical Methods90
4.6 The System as a Reservoir of Energy93
4.7 Formulation of the First Law of Thermodynamics95
4.8 Relative and Absolute Internal Energy97
4.9 The First Law for Differential Processes98
4.10 Work in Quasistatic Processes100
4.11 Heat Absorbed in Quasistatic Processes102
4.12 The First Law in Differential and Integral Forms103
4.13 Cyclic Processes and Perpetual Motion104
4.14 Mechanics and the First Law106
PROBLEMS107
CHAPTER FIVE Work and Heat in Various Systems109
5.1 Introduction109
5.2 Systems under Uniform Hydrostatic Pressure109
5.3 Other Mechanical Systems112
Thin Uniform Filament under Stretching Force112
Systems with Surface Tension112
5.4 Electrical Systems112
5.5 Magnetic Systems114
5.6 The General Case117
5.7 Heat Capacities of a Pure Substance118
5.8 Heat Capacities with the Variables T and p119
5.9 Heat Capacities with the Variables T and V120
5.10 Heat Absorbed along Certain Curves121
5.11 Relations among the Heat Capacities;Specific Heats123
5.12 Heat Capacities for Other Systems124
5.13 Internal Energy of a Gas126
5.14 Internal Energy of a Gas from Experiment127
5.15 Heat Capacities of an Ideal Gas131
5.16 Heat Capacities of Real Gases132
5.17 Slope of the Adiabatic Curve133
5.18 Equation of the Adiabatic for the Ideal Gas135
PROBLEMS137
CHAPTER SIX Heat Capacities of Gases140
6.1 Experimental Measurements of Cv,Cp,and γ140
6.2 Joly's Steam Calorimeter for Cv141
6.3 Eucken's Low-Temperature Gas Calorimeter for Cv142
6.4 Explosion Method for Cv142
6.5 Method of Mixtures of Holborn and Henning for Cp144
6.6 Continuous-Flow Method for Cp144
6.7 γ by Adiabatic Expansion145
6.8 Rüchhardt's Method for γ147
6.9 Rinkel's Modified Method for γ159
6.10 Experimental Values of Cv and γ159
6.11 Kinetic Theory of the Ideal Gas151
6.12 Equipartition of Energy152
6.13 Degrees of Freedom of Molecules154
6.14 Molecular Vibration154
6.15 Quantization of Energy159
6.16 Empirical Formula for Variation of Cp with T163
PROBLEMS164
CHAPTER SEVEN Solids,Liquids,and Change of Phase165
7.1 Measurement of the Heat Capacities of Solids165
7.2 The Nernst-Lindemann Vacuum Calorimeter166
7.3 The Adiabatic Vacuum Calorimeter168
7.4 Equilibrium Method169
7.5 The Law of Dulong and Petit171
7.6 Temperature Variation of Cv172
7.7 Theoretical Interpretation of Cv for Solids176
7.8 Heat Capacities of Liquids178
7.9 Change of Phase179
7.10 Enthalpy180
7.11 Enthalpy and Internal Energy182
7.12 Heat of Sublimation of a Monatomic Solid184
7.13 Enthalpy and Internal Energy for Simple Substances186
7.14 Heat of Reaction and Enthalpy Tables189
7.15 Kirchhoff's Heat Capacity Formulas193
7.16 The First Law with Mass Flow194
The Constant-Flow Calorimeter196
The Porous Plug and the Throttle Valve196
The Ideal Nozzle197
The Steam Turbine197
PROBLEMS198
CHAPTER EIGHT Heat Engines and the Second Law200
8.1 Heat Engines200
8.2 Thermal Efficiency201
8.3 Idealized Engine Cycles203
Reversible Cycles204
Single Pure Substance as Working Substance204
Ideal Gas204
Infinite Reservoirs204
8.4 The Gasoline Engine205
8.5 The Air Standard Otto Cycle206
8.6 The Air Standard Diesel Cycle207
8.7 Carnot's Principle209
8.8 Carnot's Theorem211
8.9 Clausius'Statement of the Second Law213
8.10 The Second Law According to Kelvin and Planck214
8.11 Criteria for Equivalence215
8.12 The Carnot Refrigerator216
8.13 Kelvin's Thermodynamic Heating217
8.14 Various Carnot Cycles220
Two-Phase System220
Stretched Elastic Wire221
Surface Film221
8.15 The Kelvin Temperature Scale222
PROBLEMS225
CHAPTER NINE Entropy and the Second Law228
9.1 Entropy and Necessary Waste228
9.2 The Clausius Sum for a Closed Cycle229
9.3 The Clausius Sum as an Integral231
9.4 Entropy as a Property of a System233
9.5 The Principle of the Increase of Entropy235
9.6 Free Expansion of an Ideal Gas237
9.7 Mixing of Gases239
9.8 Dissipation of Mechanical and Electrical Energy241
9.9 Temperature Equalization242
9.10 Uses of Entropy244
9.11 Temperature-Entropy Diagram244
9.12 dS as a Perfect Differential245
9.13 Heat Capacities as Entropy Derivatives247
9.14 Entropy of an Ideal Gas249
9.15 General Laboratory Equations for dU,dH,and dS251
9.16 Thermodynamic Potentials253
Internal Energy253
Enthalpy253
Entropy253
9.17 The Potentials of Helmholtz and Gibbs254
Helmholtz's Potential254
Gibbs'Potential255
9.18 The Clausius Equations256
9.19 The Principle of Carathéodory257
9.20 Natural,Unnatural,and Reversible Processes259
PROBLEMS261
CHAPTER TEN The Steam Engine and the Refrigerator264
10.1 Introduction264
10.2 The Rankine Cycle264
10.3 Efficiency of the Rankine Cycle266
10.4 Steam Tables267
10.5 Use of Steam Tables270
10.6 The Steam Dome in the p-v Plane271
10.7 The T-s,h-s,and p-s Diagrams273
10.8 Improvements in the Utilization of Steam275
The Newcomen Atmospheric Engine276
James Watt's Contributions276
Multiple-Expansion Engines276
The Uniflow Engine277
10.9 The Steam Turbine277
10.10 Superpressure Turbines279
10.11 The Refrigerator282
10.12 Common Refrigerants285
10.13 The Heat Pump287
10.14 The Electrolux Refrigerator289
REFERENCES290
PROBLEMS290
CHAPTER ELEVEN Thermodynamic Methods292
11.1 Introduction292
11.2 Thermodynamic Methods292
The Cyclic Method293
Analytic Methods295
11.3 The Clausius-Clapeyron Equation(Cyclic Method)297
11.4 The Clausius-Clapeyron Equation in General299
11.5 Maxwell's Relations(Cross Derivative Method)302
11.6 Maxwell's Relations and Multiphase Systems303
11.7 Specific Heats of Saturated Phases304
11.8 Gibbs'Potential307
11.9 Relation of the Triple Point to the Ice Point208
Solubility Effect309
Direct Pressure Effect310
11.10 The Six General Relations of Maxwell311
11.11 The Three Independent or Basic Derivatives312
11.12 Derivatives in Terms of the Basic Three315
11.13 Jacobians317
11.14 The Reciprocity Theorem for Jaeobians319
11.15 Maxwell's Relations in Jacobian Form321
11.16 General Derivatives by Jacobians323
11.17 The Fundamental Jacobian323
PROBLEMS325
CHAPTER TWELVE Applications of the General Relations328
12.1 Introduction328
12.2 Internal Energy,Enthalpy,and Entropy for Condensed Phases330
12.3 Thermodynamic Functions for Ideal Gases332
12.4 The van tier Waals Gas335
12.5 The Adiabatic Law for a van der Waals Gas336
12.6 Internal Energy,Enthalpy,and Entropy for Real Gases338
12.7 The Joule-Kelvin Effect344
12.8 The Inversion Curve345
12.9 Joule-Kelvin Cooling347
12.10 The Maximum Inversion Temperature349
12.11 Integration of the Clausius-Clapeyron Equation352
12.12 The Ideal Gas Approximation352
12.13 The General Vapor Pressure Equation of Kirchhoff356
12.14 Kirchhoff's Formula for Latent Heat of Sublimation357
12.15 The Vapor Pressure Formula for a Solid(Ideal Vapor)359
12.16 Latent Heat of Sublimation of a Monatomie Solid360
12.17 Vapor Pressure of a Monatomic Solid362
12.18 Entropy and the Vapor Pressure Constant364
PROBLEMS366
CHAPTER THIRTEEN Applications to Various Systems370
13.1 The n-Variable Thermodynamic System370
13.2 Restricted and Unrestricted Systems372
13.3 Tensed Filament or Uniform Rod374
Temperature Change on Stretching(Adiabatic)375
Heating a Stiff Rod at Constant Length375
13.4 Reversible Electric Cell376
13.5 The Cavity Radiator and Black Body Radiation381
Radiancy of a Surface or Cavity381
The Cavity Radiator382
Properties of surfaces383
13.6 Radiation Density and Radiancy384
Directional Radiancy384
Parallel Beam Radiancy385
Relation of R to R?386
Relation of Rc to the Energy Density386
13.7 Pressure of Radiation388
13.8 The Stefan-Boltzmann Total Radiation Law389
13.9 Surface Tension391
13.10 Stressed Dielectrics in an Electric Field394
13.11 Behavior of Entropy and Helmholtz's and Gibbs'Potentials on Approach to Equilibrium397
Adiabatic Processes398
Isothermal Processes399
13.12 Conditions for Stable Equilibrium399
13.13 The Electrochemical Potential400
13.14 Multicomponent Systems401
13.15 Heterogeneous Equilibrium and the Phase Rule402
Gibbs'Phase Rule403
13.16 Chemical Systems of Two Components405
13.17 The Thermocouple406
13.18 Kelvin's Treatment of the Thermoeouple408
PROBLEMS410
CHAPTER FOURTEEN The Physics of Low Temperatures413
14.1 Production of Low Temperatures413
14.2 Helium Liquefiers414
14.3 Measurement of Low Temperatures415
14.4 The Liquid Helium Vapor Pressure Formula416
14.5 Phase Relations Of Helium419
14.6 The Order of a Transition421
14.7 The λ Transition in Helium424
14.8 Dynamic Properties of Helium425
The Phenomenon of Surface Flow425
Abnormal Flow in Capillaries426
The Mechanocaloric and Fountain Effects427
14.9 The Two-Fluid Theory of HeII429
14.10 Superconductivity431
14.11 Superconductors in a Magnetic Field433
14.12 Magnetic Cooling by Adiabatic Demagnetization435
Isothermal Magnetization437
Adiabatic Change of Magnetic Field437
14.13 Magnetic Temperatures439
14.14 The Lowest Temperature in the World441
14.15 The Third Law of Thermodynamics442
REFERENCES446
PROBLEMS446
CHAPTER FIFTEEN Entropy and Probability448
15.1 Order,Disorder,and the Second Law448
15.2 Mathematical Probability449
15.3 Distribution of Marked Objects451
15.4 Microstates and the Disorder Number of a Macrostate455
15.5 The Disorder Number for a Macrostate of a Physical System457
15.6 Entropy and the Disorder Number460
15.7 Conditions for Maximum Entropy462
15.8 Volume Distribution for Maximum Entropy464
15.9 Velocity Distribution for Maximum Entropy465
15.10 Evaluation of the Parameter α'467
15.11 Evaluation of the Parameters κ and β471
15.12 Various Forms of the Velocity Distribution Law474
15.13 The Speed Distribution Law477
15.14 Mean and Root-Mean-Square Speeds479
15.15 The Equipartition Theorem and the Equation of State of an Ideal Monatomic Gas481
15.16 Mass Flux483
PROBLEMS487
CHAPTER SIXTEEN Classical Statistical Mechanics490
16.1 Introduction490
16.2 Configuration-Velocity Space491
16.3 Hamiltonian Coordinates and Phase Space494
Free Point Mass in Space495
Symmetric Rotor with a Fixed Axis496
Mass Point Moving in Space about the Origin496
The Rotating Vibrator497
16.4 μ Space and Γ Space502
16.5 Liouville's Theorem and Equal a Priori Probabilities in Γ Space505
16.6 The Equilibrium Distribution in μ Space506
16.7 The General Partition Function in μ Space508
16.8 The Ideal Monatomic Gas510
16.9 The Ideal Gas in a Uniform Gravitational Field512
16.10 The Boltzmann Equipartition Theorem516
16.11 Fluctuations in Entropy518
16.12 Entropy and Gibbs'Mixing Paradox521
16.13 Thermodynamic Functions in Terms of the Partition Function523
16.14 Summary of Useful General Formulas525
PROBLEMS526
CHAPTER SEVENTEEN Advent of the Quantum Theory529
17.1 Cell Size and Planck's Constant529
17.2 The Sackur-Tetrode Vapor Pressure Formula530
17.3 Basic Weaknesses of the Classical Argument532
17.4 Indistinguishability of Identical Particles533
17.5 The Combinatory Formula for Identical Objects536
17.6 The Bose-Einstein Distribution Law537
17.7 The Boltzmann Approximation539
17.8 Diatomic Molecule in a 1∑ State542
17.9 Quantization of Vibration and Rotation544
17.10 Rotation and Rotation-Vibration Bands546
17.11 The Partition Function for a Diatomic Gas550
17.12 The Partition Function and Internal Energy for Vibration552
17.13 Vibratory Heat Capacity556
17.14 The Partition Function and Internal Energy for Rotation558
17.15 The Vapor Pressure Constant for a Diatomic Gas562
PROBLEMS565
CHAPTER EIGHTEEN Quantum Statistics566
18.1 Photons and Matter Waves566
18.2 Wave Amplitudes and Probability569
18.3 The Wave Equation569
18.4 Particle in a Box572
18.5 The Linear Vibrator577
18.6 The Rigid Rotor in Space582
18.7 The Quantum Partition Function for Translation584
18.8 Angular Momentum and Statistical Weights586
18.9 Statistical Weights for Atoms588
18.10 Statistical Weights of Diatomic Molecular States593
18.11 Electronic Heat Capacities595
18.12 Formation of a Molecule from Atoms600
18.13 Nuclear Symmetry and Nuclear Weights604
18.14 1∑ States of Homonuclear Molecules605
18.15 Rotational Behavior of Homonuclear Molecules608
18.16 Spectroscopic and Calorimetric Entropies611
REFERENCES616
PROBLEMS616
CHAPTER NINETEEN Applications to Various Systems618
19.1 Bose-Einstein and Fermi-Dirac Statistics618
19.2 The Ideal Paramagnetic Solid620
Small x623
Large x624
19.3 Black Body Radiation and the Photon Gas626
19.4 Planck's Radiation Law628
19.5 Gibbs'Ensembles633
19.6 The System Partition Function637
19.7 The Imperfect Monatormic Gas640
19.8 The van der Waals Approximation641
19.9 The van der Waals Equation645
19.10 The Einstein Model of a Monatomic Solid648
19.11 The Debye Model of a Solid650
19.12 The Debye Formula for Internal Energy653
19.13 The Debye Function655
19.14 Extension of the Theory for Solids657
19.15 Fermi-Dirac Statistics660
19.16 The Electron Gas661
19.17 Approximation to the Value of the Parameter B663
19.18 Significance of the Fermi Level664
REFERENCES666
PROBLEMS666
Appendixes669
APPENDIX 2.1 Smoothed Second Virial Coefficients(B1 Values)for Thermometric Gases669
APPENDIX 4.1 Specific Heat,cp,and Specific Enthalpy,h,of Water at Atmospheric Pressure670
APPENDIX 11.1 The Reciprocity Theorem for Jacobians671
APPENDIX 13.1 Forms of Maxwell's Relations for n=3672
APPENDIX 15.1 Stirling's Formula673
APPENDIX 16.1 Liouville's Theorem675
APPENDIX 18.1 Solution of the Hermitian Equation676
APPENDIX 18.2 Solution of the Associated Legendre Equation678
APPENDIX 19.1 Evaluation of the Improper Integral in Sec.19.4680
APPENDIX 19.2 The Method of Darwin and Fowler681
NOTATION LIST684
USEFUL CONSTANTS689
INDEX690