图书介绍
图像处理、分析与机器视觉 英文版PDF|Epub|txt|kindle电子书版本网盘下载
![图像处理、分析与机器视觉 英文版](https://www.shukui.net/cover/45/31492203.jpg)
- Milan Sonka等编著 著
- 出版社: 北京:人民邮电出版社
- ISBN:7115097712
- 出版时间:2002
- 标注页数:770页
- 文件大小:112MB
- 文件页数:801页
- 主题词:
PDF下载
下载说明
图像处理、分析与机器视觉 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Summary8
1.2 Exercises8
1.3 References9
2 The digitized image and its properties10
2.1 Basic concepts10
2.1.1 Image functions10
2.1.3 The Fourier transform13
2.1.2 The Dirac distribution and convolution13
2.1.4 Images as a stochastic process15
2.1.5 Images as linear systems17
2.2 Image digitization18
2.2.1 Sampling18
2.2.2 Quantization22
2.2.3 Color images23
2.3 Digital image properties27
2.3.1 Metric and topological properties of digital images27
2.3.2 Histograms32
2.3.3 Visual perception of the image33
2.3.4 Image quality35
2.3.5 Noise in images35
2.4 Summary37
2.5 Exercises38
2.6 References40
3 Data structures for image analysis42
3.1 Levels of image data representation42
3.2 Traditional image data structures43
3.2.1 Matrices43
3.2.2 Chains45
3.2.3 Topological data structures47
3.2.4 Relational structures48
3.3 Hierarchical data structures49
3.3.1 Pyamids49
3.3.2 Quadtrees51
3.3.3 Other pyramidical structures52
3.4 Summary53
3.5 Exercises54
3.6 References55
4 Image pre-processing57
4.1 Pixel brightness transformations58
4.1.1 Position-dependent brightness correction58
4.1.2 Gray-scale transformation59
4.2 Geometric transformations62
4.2.1 Pixel co-ordinate transformations63
4.2.2 Brightness interpolation65
4.3 Local pre-processing68
4.3.1 Image smoothing69
4.3.2 Edge detectors77
4.3.3 Zero-crossings of the second derivative83
4.3.4 Scale in image processing88
4.3.5 Canny edge detection90
4.3.6 Parametric edge models93
4.3.7 Edges in multi-spectral images94
4.3.8 Other local pre-processing operators94
4.3.9 Adaptive neighborthood pre-processing98
4.4 Image restoration102
4.4.1 Degradations that are easy to restore105
4.4.3 Wiener filtration106
4.4.2 Inverse filtration106
4.5 Summary108
4.6 Exercises111
4.7 References118
5 Segmentation123
5.1 Thresholding124
5.1.1 Threshold detection methods127
5.1.2 Optimal thresholding128
5.1.3 Multi-spectral thresholding131
5.1.4 Thresholding in hierarchical data structures133
5.2 Edge-based segmentation134
5.2.1 Edge image thresholding135
5.2.2 Edge relaxation137
5.2.3 Border tracing142
5.2.4 Border detection as graph searching148
5.2.5 Border detection as dynamic programming158
5.2.6 Hough transforms163
5.2.7 Border detection using border location information173
5.2.8 Region construction form borders174
5.3 Region-based segmentation176
5.3.1 Region merging177
5.3.2 Region splitting181
5.3.3 Splitting and merging181
5.3.4 Watershed segmentation186
5.3.5 Region growing post-processing188
5.4 Matching190
5.4.1 Matching criteria191
5.4.2 Control strategies of matching193
5.5.1 Simultaneous detection of border pairs194
5.5 Advanced optimal border and surface detection approaches194
5.5.2 Surface detection199
5.6 Summary205
5.7 Exercises210
5.8 References216
6 Shape representation and description228
6.1 Region identification232
6.2 Contour-based shape representation and description235
6.2.1 Chain codes236
6.2.2 Simple geometric border representation237
6.2.3 Fourier transforms of boundaries240
6.2.4 Boundary description using segment sequences242
6.2.5 B-spline representation245
6.2.6 Other contour-based shape description approaches248
6.2.7 Spape invariants249
6.3 Region-based shape representation and description254
6.3.1 Simple scalar region descriptors254
6.3.2 Moments259
6.3.3 Convex hull262
6.3.4 Graph representation based on region skeleton267
6.3.5 Region decomposition271
6.3.6 Region neighborhood graphs272
6.4 Shape classes273
6.5 Summary274
6.6 Exercises276
6.7 References279
7 Object recognition290
7.1 Knowledge representation291
7.2 Statistical pattern recognition297
7.2.1 Classification principles298
7.2.2 Classifier setting300
7.2.3 Classifier learning303
7.2.4 Cluster analysis307
7.3 Neural nets308
7.3.1 Feed-forward networks310
7.3.2 Unsupervised learning312
7.3.3 Hopfield neural nets313
7.4 Syntactic pattern recognition315
7.4.1 Grammars and languages317
7.4.2 Syntactic analysis, syntactic classifier319
7.4.3 Syntactic classifier learning, grammar inference321
7.5 Recognition as graph matching323
7.5.1 Isomorphism of graphs and sub-graphs324
7.5.2 Similarity of graphs328
7.6 Optimization techniques in recognition328
7.6.1 Genetic algorithms330
7.6.2 Simulated annealing333
7.7.1 Fuzzy sets and fuzzy membership functions336
7.7 Fuzzy systems336
7.7.2 Fuzzy set operators338
7.7.3 Fuzzy reasoning339
7.7.4 Fuzzy system design and training343
7.8 Summary344
7.9 Exercises347
7.10 References354
8 Image understanding362
8.1.2 Hierarchical control364
8.1.1 Parallel and serial processing control364
8.1 Image understanding control strategies364
8.1.3 Bottom-up control strategies365
8.1.4 Model-based control strategies366
8.1.5 Combined control strategies367
8.1.6 Non-hierarchical control371
8.2 Active contour models-snakes374
8.3 Point distribution models380
8.4 Pattern recognition methods in image understanding390
8.4.1 Contextual image classification392
8.5 Scene labeliing and constraint propagation397
8.5.1 Discrete relaxation398
8.5.2 Probabilistic relaxation400
8.5.3 Searching interpretation trees404
8.6 Semantic image segmentation and understanding404
8.6.1 Semantic region growing406
8.6.2 Genetic image interpretation408
8.7 Hidden Markov models417
8.8 Summary423
8.9 Exercises426
8.10 References428
9 3D vision, geometry, and radiometry441
9.1 3D vision tasks442
9.1.1 Marr s theory444
9.1.2 Other vision paradigms: Active and purposive vision446
9.2 Geometry for 3D vision448
9.2.1 Basic of projective geometry448
9.2.2 The single perspective camera449
9.2.3 An overview of single camera calibration453
9.2.4 Calibration of one camera from a known scene455
9.2.5 Two cameras, stereopsis457
9.2.6 The geometry of two cameras;the fundamental matrix460
9.2.7 Relative motion of the camera;the essential matrix462
9.2.8 Fundamental matrix estimation from image point correspondences464
9.2.9 Applications of epipolar geometry in vision466
9.2.10 Three and more cameras471
9.2.11 Stereo correspondence algorithms476
9.2.12 Active acquisition of range images483
9.3 Radiometry and 3D vision486
9.3.1 Radiometric considerations in determining gary-level486
9.3.2 Surface reflectance490
9.3.3 Shape from shading494
9.3.4 Photometric stereo498
9.4 Summary499
9.5 Exercises501
9.6 References502
10 Use of 3D vision508
10.1 Shape from X508
10.1.1 Shape from motion508
10.1.2 Shape from texture515
10.1.3 Other shape from X techniques517
10.2 Full 3D objects519
10.2.1 3D objects, models, and related issues519
10.2.2 Line labeling521
10.2.3 Volumetirc representation, direct mesurements523
10.2.4 Volumetric modeling strategies525
10.2.5 Surface modeling strategies527
10.2.6 Registering surface patches and their fusion to get a full 3D model529
10.3.1 General considerations535
10.3 3D model-based vision535
10.3.2 Goad s algorithm537
10.3.3 Model-based recognition of curved objects from intensity images541
10.3.4 Model-based recognition based on range images543
10.4 2D view-based representations of a 3D scene544
10.4.1 Viewing space544
10.4.2 Multi-view representations and aspect graphs544
10.4.3 Geons as a 2D view-based structural representation545
10.4.4 Visualizing 3D real-world scenes using stored collections of 2D view546
10.5 Summary551
10.6 Exercies552
10.7 References553
11 Mathematical morphology559
11.1 Basic morphological concepts559
11.2 Four morphological principles561
11.3 Binary dilation and erosion563
11.3.1 Dilation563
11.3.2 Erosion565
11.3.3 Hit-or-miss transformation568
11.3.4 Opening and closing568
11.4 Gray-scle dilation and erosion569
11.4.1 Top surface, umbra, and gray-scale dilation and erosion570
11.4.2 Umbra homeomorphism theorem, properties of erosion and dilation,opening and closing573
11.4.3 Top hat transformation574
11.5 Skeltons and object marking576
11.5.1 Homotopic transformations576
11.5.2 Skeletion, maximal ball576
11.5.3 Thinning, thickening,and homotopic skeleton578
11.5.4 Quench function, ultimate erosion581
11.5.5 Ultimate erosion and distance functions584
11.5.6 Geodesic trandformations585
11.5.7 Morphological reconstruction586
11.6 Granulometry589
11.7 Morphological segmentation and watersheds590
11.7.1 Particles segmenttation, marking, and watersheds590
11.7.2 Binary morphological segmentation592
11.7.3 Gary-scale segmentation, watersheds594
11.8 Summary595
11.9 Exercises597
11.10 References598
12 Linear discrete image tranforms600
12.1 Basic theory600
12.2 Fourier transform602
12.3 Hadamard transform604
12.4 Discrete cosine transform605
12.5 Wavelets606
12.6 Other orthogonal image transforms608
12.7 Applications of discrete image transforms609
12.8 Summary613
12.9 Exercises617
12.10 References619
13.Image data compression621
13.1 Image data properties622
13.2 Discrete image tranforms in image data compression623
13.3 Predictive compression methods624
13.4 Vector quantization629
13.5 Hierarchical and progressive compression methods630
13.6 Comparison of compression methods631
13.7 Other techniques632
13.8 Coding633
13.9 JPEG and MPEG image compression634
13.9.1 JPEG-still image compression634
13.9.2 MPEG-full-motion video compression636
13.10 Summary637
13.11 Exercises640
13.12 References641
14 Texture646
14.1 Statistical texture description649
14.1.1 Methods based on spatial frequencies649
14.1.2 Co-occurrence matices651
14.1.3 Edge frequency653
14.1.4 Primitive length (run length)655
14.1.5 Laws texture energy measures656
14.1.6 Fractal texture description657
14.1.7 Other statistical methods of texture description659
14.2 Syntactic texture description methods660
14.2.1 Shape chain grammars661
14.2.2 Graph grammars663
14.2.3 Primitive grouping in hierarchical textures664
14.3 Hybrid texture description methods666
14.4 Texture recognition method applications667
14.5 Summary668
14.6 Exercises670
14.7 References672
15 Motion analysis679
15.1 Differential mition analysis methods682
15.2 Optical flow685
15.2.1 Optical flow computation686
15.2.2 Global and local optical fow estimation689
15.2.3 Optical flow computation approaches690
15.2.4 Optical flow in motion analysis693
15.3 Analysis based on correspondence of interest points696
15.3.1 Detection of interest points696
15.3.2 Correspondence of interest points697
15.3.3 Object tracking700
15.4 Kalman filters708
15.4.1 Example709
15.5 Summary710
15.6 Exercises712
15.7 References714
16 Case studies722
16.1 An optical music recognition system722
16.2 Automated image analysis in cardiology727
16.2.1 Robust analysis of coronry angiograms730
16.2.2 Knowledge-based analysis of intra-vascular ultrasound733
16.3 Automated indentification of airway trees738
16.4 Passive surveillance744
16.5 References750
Index755