图书介绍
模拟CMOS集成电路设计 第2版PDF|Epub|txt|kindle电子书版本网盘下载
![模拟CMOS集成电路设计 第2版](https://www.shukui.net/cover/4/31357409.jpg)
- BehzadRazavi,池保勇著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302489856
- 出版时间:2018
- 标注页数:647页
- 文件大小:85MB
- 文件页数:663页
- 主题词:CMOS电路-电路设计-教材-英文
PDF下载
下载说明
模拟CMOS集成电路设计 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction to Analog Design1
1.1 Why Analog?1
1.1.1 Sensing and Processing Signals1
1.1.2 When Digital Signals Become Analog2
1.1.3 Analog Design Is in Great Demand3
1.1.4 Analog Design Challenges4
1.2 Why Integrated?4
1.3 Why CMOS?5
1.4 Why This Book?5
1.5 Levels of Abstraction5
2 Basic MOS Device Physics7
2.1 General Considerations8
2.1.1 MOSFET as a Switch8
2.1.2 MOSFET Structure8
2.1.3 MOS Symbols9
2.2 MOS I/V Characteristics10
2.2.1 Threshold Voltage10
2.2.2 Derivation of I/V Characteristics12
2.2.3 MOS Transconductance19
2.3 Second-Order Effects20
2.4 MOS Device Models26
2.4.1 MOS Device Layout26
2.4.2 MOS Device Capacitances27
2.4.3 MOS Small-Signal Model31
2.4.4 MOS SPICE models34
2.4.5 NMOS Versus PMOS Devices35
2.4.6 Long-Channel Versus Short-Channel Devices35
2.5 Appendix A: FinFETs36
2.6 Appendix B: Behavior of a MOS Device as a Capacitor37
3 Single-Stage Amplifiers45
3.1 Applications45
3.2 General Considerations45
3.3 Common-Source Stage47
3.3.1 Common-Source Stage with Resistive Load47
3.3.2 CS Stage with Diode-Connected Load52
3.3.3 CS Stage with Current-Source Load58
3.3.4 CS Stage with Active Load59
3.3.5 CS Stage with Triode Load60
3.3.6 CS Stage with Source Degeneration61
3.4 Source Follower68
3.5 Common-Gate Stage75
3.6 Cascode Stage82
3.6.1 Folded Cascode90
3.7 Choice of Device Models92
4 Differential Amplifiers100
4.1 Single-Ended and Differential Operation100
4.2 Basic Differential Pair103
4.2.1 Qualitative Analysis104
4.2.2 Quantitative Analysis106
4.2.3 Degenerated Differential Pair116
4.3 Common-Mode Response118
4.4 Differential Pair with MOS Loads123
4.5 Gilbert Cell126
5 Current Mirrors and Biasing Techniques134
5.1 Basic Current Mirrors134
5.2 Cascode Current Mirrors139
5.3 Active Current Mirrors146
5.3.1 Large-Signal Analysis149
5.3.2 Small-Signal Analysis152
5.3.3 Common-Mode Properties156
5.3.4 Other Properties of Five-Transistor OTA159
5.4 Biasing Techniques160
5.4.1 CS Biasing161
5.4.2 CG Biasing164
5.4.3 Source Follower Biasing165
5.4.4 Differential Pair Biasing166
6 Frequency Response of Amplifiers173
6.1 General Considerations173
6.1.1 Miller Effect174
6.1.2 Association of Poles with Nodes179
6.2 Common-Source Stage180
6.3 Source Followers188
6.4 Common-Gate Stage193
6.5 Cascode Stage196
6.6 Differential Pair198
6.6.1 Differential Pair with Passive Loads198
6.6.2 Differential Pair with Active Load201
6.7 Gain-Bandwidth Trade-Offs203
6.7.1 One-Pole Circuits204
6.7.2 Multi-Pole Circuits205
6.8 Appendix A: Extra Element Theorem206
6.9 Appendix B: Zero-Value Time Constant Method208
6.10 Appendix C: Dual of Miller's Theorem212
7 Noise219
7.1 Statistical Characteristics of Noise219
7.1.1 Noise Spectrum221
7.1.2 Amplitude Distribution224
7.1.3 Correlated and Uncorrelated Sources225
7.1.4 Signal-to-Noise Ratio226
7.1.5 Noise Analysis Procedure227
7.2 Types of Noise228
7.2.1 Thermal Noise228
7.2.2 Flicker Noise234
7.3 Representation of Noise in Circuits236
7.4 Noise in Single-Stage Amplifiers243
7.4.1 Common-Source Stage244
7.4.2 Common-Gate Stage249
7.4.3 Source Followers253
7.4.4 Cascode Stage254
7.5 Noise in Current Mirrors254
7.6 Noise in Differential Pairs256
7.7 Noise-Power Trade-Off263
7.8 Noise Bandwidth264
7.9 Problem of Input Noise Integration265
7.10 Appendix A: Problem of Noise Correlation265
8 Feedback274
8.1 General Considerations274
8.1.1 Properties of Feedback Circuits275
8.1.2 Types of Amplifiers282
8.1.3 Sense and Return Mechanisms284
8.2 Feedback Topologies286
8.2.1 Voltage-Voltage Feedback286
8.2.2 Current-Voltage Feedback291
8.2.3 Voltage-Current Feedback294
8.2.4 Current-Current Feedback297
8.3 Effect of Feedback on Noise298
8.4 Feedback Analysis Difficulties299
8.5 Effect of Loading303
8.5.1 Two-Port Network Models303
8.5.2 Loading in Voltage-Voltage Feedback304
8.5.3 Loading in Current-Voltage Feedback308
8.5.4 Loading in Voltage-Current Feedback310
8.5.5 Loading in Current-Current Feedback313
8.5.6 Summary of Loading Effects315
8.6 Bode's Analysis of Feedback Circuits315
8.6.1 Observations315
8.6.2 Interpretation of Coefficients317
8.6.3 Bode's Analysis320
8.6.4 Blackman'sImpedance Theorem325
8.7 Middlebrook's Method331
8.8 Loop Gain Calculation Issues332
8.8.1 Preliminary Concepts332
8.8.2 Difficulties with Return Ratio334
8.9 Alternative Interpretations of Bode's Method336
9 Operational Amplifiers344
9.1 General Considerations344
9.1.1 Performance Parameters344
9.2 One-Stage Op Amps349
9.2.1 Basic Topologies349
9.2.2 Design Procedure353
9.2.3 Linear Scaling354
9.2.4 Folded-Cascode Op Amps355
9.2.5 Folded-Cascode Properties358
9.2.6 Design Procedure359
9.3 Two-Stage Op Amps361
9.3.1 Design Procedure363
9.4 Gain Boosting364
9.4.1 Basic Idea364
9.4.2 Circuit Implementation368
9.4.3 Frequency Response371
9.5 Comparison373
9.6 Output Swing Calculations373
9.7 Common-Mode Feedback374
9.7.1 Basic Concepts374
9.7.2 CM Sensing Techniques377
9.7.3 CM Feedback Techniques380
9.7.4 CMFB in Two-Stage Op Amps386
9.8 Input Range Limitations388
9.9 Slew Rate390
9.10 High-Slew-Rate Op Amps397
9.10.1 One-Stage Op Amps397
9.10.2 Two-Stage Op Amps399
9.11 Power Supply Rejection400
9.12 Noise in Op Amps402
10 Stability and Frequency Compensation410
10.1 General Considerations410
10.2 Multipole Systems414
10.3 Phase Margin416
10.4 Basic Frequency Compensation420
10.5 Compensation of Two-Stage Op Amps426
10.6 Slewing in Two-Stage Op Amps433
10.7 Other Compensation Techniques436
10.8 Nyquist's Stability Criterion439
10.8.1 Motivation439
10.8.2 Basic Concepts440
10.8.3 Construction of Polar Plots442
10.8.4 Cauchy's Principle447
10.8.5 Nyquist's Method447
10.8.6 Systems with Poles at Origin450
10.8.7 Systems with Multiple 180° Crossings454
11 Nanometer Design Studies459
11.1 Transistor Design Considerations459
11.2 Deep-Submicron Effects460
11.3 Transconductance Scaling463
11.4 Transistor Design466
11.4.1 Design for Given ID and VDs,min466
11.4.2 Design for Given gm and ID469
11.4.3 Design for Given gm and VDs,min470
11.4.4 Design for a Given gm471
11.4.5 Choice of Channel Length472
11.5 Op Amp Design Examples472
11.5.1 Telescopic Op Amp473
11.5.2 Two-Stage Op Amp487
11.6 High-Speed Amplifier495
11.6.1 General Considerations496
11.6.2 Op Amp Design500
11.6.3 Closed-Loop Small-Signal Performance501
11.6.4 Op Amp Scaling502
11.6.5 Large-Signal Behavior505
11.7 Summary507
12 Bandgap References509
12.1 General Considerations509
12.2 Supply-Independent Biasing509
12.3 Temperature-Independent References513
12.3.1 Negative-TC Voltage513
12.3.2 Positive-TC Voltage514
12.3.3 Bandgap Reference515
12.4 PTAT Current Generation523
12.5 Constant-Gm Biasing524
12.6 Speed and Noise Issues525
12.7 Low-Voltage Bandgap References529
12.8 Case Study533
13 Introduction to Switched-Capacitor Circuits539
13.1 General Considerations539
13.2 Sampling Switches543
13.2.1 MOSFETS as Switches543
13.2.2 Speed Considerations547
13.2.3 Precision Considerations549
13.2.4 Charge Injection Cancellation553
13.3 Switched-Capacitor Amplifiers555
13.3.1 Unity-Gain Sampler/Buffer555
13.3.2 Noninverting Amplifier562
13.3.3 Precision Multiply-by-Two Circuit567
13.4 Switched-Capacitor Integrator568
13.5 Switched-Capacitor Common-Mode Feedback571
14 Nonlinearity and Mismatch576
14.1 Nonlinearity576
14.1.1 General Considerations576
14.1.2 Nonlinearity of Differential Circuits579
14.1.3 Effect of Negative Feedback on Nonlinearity581
14.1.4 Capacitor Nonlinearity583
14.1.5 Nonlinearity in Sampling Circuits584
14.1.6 Linearization Techniques585
14.2 Mismatch591
14.2.1 Effect of Mismatch593
14.2.2 Offset Cancellation Techniques598
14.2.3 Reduction of Noise by Offset Cancellation602
14.2.4 Alternative Definition of CMRR603
15 Layout and Packaging607
15.1 General Layout Considerations607
15.1.1 Design Rules608
15.1.2 Antenna Effect610
15.2 Analog Layout Techniques610
15.2.1 Multifinger Transistors611
15.2.2 Symmetty613
15.2.3 Shallow Trench Isolation Issues617
15.2.4 Well Proximity Effects618
15.2.5 Reference Distribution618
15.2.6 Passive Devices620
15.2.7 Interconnects627
15.2.8 Pads and ESD Protection631
15.3 Substrate Coupling634
15.4 Packaging638