图书介绍
从零开始学Python数据分析 视频教学版PDF|Epub|txt|kindle电子书版本网盘下载
- 罗攀编著 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111606468
- 出版时间:2018
- 标注页数:260页
- 文件大小:18MB
- 文件页数:274页
- 主题词:软件工具-程序设计
PDF下载
下载说明
从零开始学Python数据分析 视频教学版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 Python环境搭建与使用1
1.1 Anaconda的安装和使用1
1.1.1 Anaconda的安装1
1.1.2 Anaconda的使用3
1.2 Jupyter Notebook的使用5
1.2.1 更改工作空间5
1.2.2 界面介绍与使用7
第2章 NumPy入门和实战9
2.1 ndarray多维数组9
2.1.1 创建ndarray数组9
2.1.2 ndarray对象属性12
2.1.3 ndarray数据类型13
2.1.4 数组变换15
2.1.5 NumPy的随机数函数18
2.2 数组的索引和切片20
2.2.1 数组的索引21
2.2.2 数组的切片23
2.2.3 布尔型索引24
2.2.4 花式索引26
2.3 数组的运算26
2.3.1 数组和标量间的运算26
2.3.2 通用函数27
2.3.3 条件逻辑运算28
2.3.4 统计运算30
2.3.5 布尔型数组运算31
2.3.6 排序32
2.3.7 集合运算33
2.3.8 线性代数34
2.4 数组的存取34
2.4.1 数组的存储35
2.4.2 数组的读取35
2.5 综合示例——图像变换35
第3章 pandas入门和实战38
3.1 pandas数据结构38
3.1.1 创建Series数据38
3.1.2 创建DataFrame数据40
3.1.3 索引对象43
3.2 pandas索引操作44
3.2.1 重新索引45
3.2.2 更换索引46
3.2.3 索引和选取48
3.2.4 操作行和列52
3.3 pandas数据运算53
3.3.1 算术运算54
3.3.2 函数应用和映射55
3.3.3 排序56
3.3.4 汇总与统计57
3.3.5 唯一值和值计数58
3.4 层次化索引59
3.4.1 层次化索引简介59
3.4.2 重排分级顺序60
3.4.3 汇总统计61
3.5 pandas可视化61
3.5.1 线形图61
3.5.2 柱状图63
3.5.3 直方图和密度图66
3.5.4 散点图67
3.6 综合示例——小费数据集68
3.6.1 数据分析流程68
3.6.2 数据来源68
3.6.3 定义问题69
3.6.4 数据清洗69
3.6.5 数据探索70
第4章 外部数据的读取与存储73
4.1 文本数据的读取与存储73
4.1.1 CSV文件的读取73
4.1.2 TXT文件的读取80
4.1.3 文本数据的存储81
4.2 JSON和Excel数据的读取与存储82
4.2.1 JSON数据的读取与存储82
4.2.2 Excel数据的读取与存储85
4.3 数据库的读取与存储87
4.3.1 连接数据库87
4.3.2 读取数据库88
4.3.3 存储数据库90
4.4 Web数据的读取90
4.4.1 读取HTML表格90
4.4.2 网络爬虫92
第5章 数据清洗与整理95
5.1 数据清洗95
5.1.1 处理缺失值95
5.1.2 移除重复数据99
5.1.3 替换值101
5.1.4 利用函数或映射进行数据转换101
5.1.5 检测异常值102
5.1.6 虚拟变量103
5.2 数据合并和重塑104
5.2.1 merge合并105
5.2.2 concat连接110
5.2.3 combine_first合并113
5.2.4 数据重塑114
5.3 字符串处理116
5.3.1 字符串方法117
5.3.2 正则表达式118
5.4 综合示例——Iris数据集118
5.4.1 数据来源118
5.4.2 定义问题119
5.4.3 数据清洗119
5.4.4 数据探索123
第6章 数据分组与聚合125
6.1 数据分组125
6.1.1 GroupBy简介125
6.1.2 按列名分组128
6.1.3 按列表或元组分组130
6.1.4 按字典分组130
6.1.5 按函数分组131
6.2 聚合运算132
6.2.1 聚合函数132
6.2.2 多函数应用134
6.3 分组运算136
6.3.1 transform方法137
6.3.2 apply方法138
6.4 数据透视表139
6.4.1 透视表140
6.4.2 交叉表140
6.5 综合实例——巴尔的摩公务员工资数据集142
6.5.1 数据来源142
6.5.2 定义问题143
6.5.3 数据清洗143
6.5.4 数据探索144
第7章 matplotlib可视化148
7.1 线形图148
7.1.1 基本使用148
7.1.2 颜色与线形149
7.1.3 点标记151
7.2 柱状图152
7.2.1 基本使用152
7.2.2 刻度与标签155
7.2.3 图例156
7.3 其他基本图表158
7.3.1 散点图158
7.3.2 直方图159
7.4 自定义设置159
7.4.1 图表布局159
7.4.2 文本注解162
7.4.3 样式与字体163
7.5 综合示例——星巴克店铺数据集164
7.5.1 数据来源164
7.5.2 定义问题166
7.5.3 数据清洗166
7.5.4 数据探索168
第8章 seaborn可视化172
8.1 样式与分布图172
8.1.1 seabom样式172
8.1.2 坐标轴移除174
8.1.3 单变量分布图175
8.1.4 多变量分布图178
8.2 分类图181
8.2.1 分类散点图181
8.2.2 箱线图与琴形图183
8.2.3 柱状图186
8.3 回归图与网格187
8.3.1 回归图187
8.3.2 网格190
8.4 综合示例——泰坦尼克号生还者数据191
8.4.1 数据来源191
8.4.2 定义问题192
8.4.3 数据清洗192
8.4.4 数据探索195
第9章 pyecharts可视化202
9.1 基础图表202
9.1.1 pyecharts安装202
9.1.2 散点图203
9.1.3 折线图204
9.1.4 柱状图206
9.2 其他图表209
9.2.1 饼图210
9.2.2 箱线图212
9.3 综合示例——糗事百科用户数据213
9.3.1 数据来源214
9.3.2 定义问题214
9.3.3 数据清洗215
9.3.4 数据探索217
第10章 时间序列224
10.1 datetime模块224
10.1.1 datetime构造224
10.1.2 数据转换225
10.2 时间序列基础228
10.2.1 时间序列构造228
10.2.2 索引与切片229
10.3 日期231
10.3.1 日期范围231
10.3.2 频率与移动233
10.4 时期235
10.4.1 时期基础235
10.4.2 频率转换236
10.4.3 时期数据转换237
10.5 频率转换与重采样238
10.5.1 重采样238
10.5.2 降采样239
10.5.3 升采样240
10.6 综合示例——自行车租赁数据241
10.6.1 数据来源241
10.6.2 定义问题242
10.6.3 数据清洗242
10.6.4 数据探索244
第11章 综合案例——网站日志分析248
11.1 数据来源248
11.1.1 网站日志解析248
11.1.2 日志数据清洗251
11.2 日志数据分析252
11.2.1 网站流量分析252
11.2.2 状态码分析255
11.2.3 IP地址分析258